ФИО: Ястребов Олег Аракдандор State Autono
Должность: Ректор
Дата подписания: 27.05.2025 TREENDSHIP UNIVERSITY OF RUSSIA named after P. Lumumba
(RUDN University)
ca953a0120d891083f939673078ef1a989dae18aФИО: Ястребов Олег Аракдандор State Autono
Должность: Ректор
(RUDN University)
Science faculty

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Fundamentals of Biotechnology

course title

Recommended by the Didactic Council for the Education Field of:

04.04.01 «Chemistry»

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

«Fundamental and applied Chemistry»

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course of « Fundamentals of Biotechnology » is in the formation of the system of knowledge about biological targets, structure-activity relationship and modern methodology for the design of medicinal substances.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "Fundamentals of Biotechnology" is aimed at developing the following competencies (parts of competencies) among students:

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
PC-1	The ability to plan work and choose adequate methods for solving research problems in the chosen field of chemistry, chemical technology or sciences related to chemistry	

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course "Fundamentals of Biotechnology" refers to the elective component of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Competenc	Competence	Previous	Subsequent
e code	descriptor	courses/modules*	courses/modules*
PC-1	The ability to plan work and choose adequate methods for solving research problems in the chosen field of chemistry, chemical technology or sciences related to chemistry	cour ses/modules	Domino reactions in the synthesis of heterocycles NMR of organic compounds Molecular spectral analysis Fundamentals of drug design Mass spectrometry of organic compounds Chemistry of natural compounds Chemistry of heterocyclic compounds Stereochemistry Fundamentals of experimental research methods in CHC Experimental research
			methods in organic chemistry

Table 3.1/ The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competenc e code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
			research
			Research work
			Undergraduate practice

* To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

Course workload of the course «Fundamentals of Biotechnology» is 2 credits. Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)

Types of academic activities		Total		Semes	ter(-s)	
		academic hours	1	2	3	4
Contact academic hours	Contact academic hours		36			
including:						
Lectures (LC)		36	36			
Lab Works (LW)						
Seminars (PC)						
Seminars (workshops/tutorials) (S)		18	18			
Evaluation and assessment (exam/passing/failing grade)		18	18			
Course workload	academic hours	72	72			
	credits	2	2			

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Section 1. Introduction. Objects of	Theme 1.1. The subject of biotechnology. History of the development of biotechnology. Goals and objectives of biotechnology. The main modern fields of application and prospects for biotechnological processes.	LC
biotechnological productions.	Theme 1.2. Classification of organisms-producers. The structure and chemical composition of the cells of bacteria, plants, fungi and animals. Criteria for the selection of biological objects.	LC
Section 2. Fundamentals of genetic engineering.	Theme 2.1. Structure and functions of DNA and RNA. Genetic engineering methods for creating objects of biotechnological production. Principles of genetic engineering.	LC
Biotechnological process.	Theme 2.2. The main stages of biotechnological production. Cultivation of biological objects. Designs of bioreactors providing optimal conditions for fermentation.	LC
Section 3. Fermentation and fermentation	Theme 3.1. Glycolysis and fermentation. Production of ethanol and spirits. The use of yeast	LC

Course module title	Course module contents (topics)	Academic activities types
	for the production of protein mass. Butyric and	
1	acetone-butyl fermentation.	
production.	Theme 3.2. Lactic acid fermentation. Composition	
	and processing of milk. Production of dairy	LC
	products and cheese.	
	Theme 4.1. Applications and types of enzymes in	
	biotechnology, industry, household chemicals,	LC
Section 4. Enzymes in	medicine. Methods for isolation and purification	LU
biotechnology. Production	of enzymes. Immobilized enzymes.	
of organic acids and	Theme 4.2. Production of acids: acetic, propionic,	
carbohydrates.	gluconic, citric. Biotechnological production of	LC
	fructose syrup, polysaccharides (dextrans,	LU
	xanthan). Production of α -amino acids.	

* - to be filled in only for <u>full</u>-time training: *LC* - *lectures; LW* - *lab work; S* - *seminars.*

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom Equipment and Technology Support Requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

1. *Basic Biotechnology*, 3. ed., reprinted.; Ratledge, C., Kristiansen, B., Eds.; Cambridge Univ. Press: Cambridge, 2007.

2. Glick, B. R.; Pasternak, J. J. *Molecular Biotechnology: Principles and Applications of Recombinant DNA*, 3. ed.; American Society for Microbiology: Washington, DC, 2003.

Additional readings:

1. Основы биотехнологии: Учебное пособие / Т.А. Егорова, С.М. Клунова, Е.А. Живухина; Т.А.Егорова и др. - 2-е изд., стереотип. - М. : Академия, 2005. - 208 с.

2. Основы биотехнологии: Учебное пособие / Н.С. Простаков, Т.Н. Борисова; РУДН. - М. : Изд-во РУДН, 1992. - 111 с.

3. Биотехнология. Принципы и применение / Под ред. И.Хиггинса; Пер. с англ. А.С.Антонова; Под ред. А.А.Баева. - М. : Мир, 1988. - 479 с.

4. Б.Глик, Дж. Пастернак. Молекулярная биотехнология. Принципы и применение. Пер. с англ. – М: Мир, 2002.

5. Р.Д.Шмид. Наглядная биотехнология. Пер. с нем. – М., Бином, 2009. *Internet sources*

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) http://lib.rudn.ru/MegaPro/Web

- EL "University Library Online" http://www.biblioclub.ru

- EL "Yurayt" http://www.biblio-online.ru

- EL "Student Consultant" www.studentlibrary.ru

- EL "Lan" http://e.lanbook.com/

- EL "Trinity Bridge"

- Journal "Nature Biotechnology": https://www.nature.com/nbt/

2. Databases and search engines:

- Yandex search engine https://www.yandex.ru/

- Google search engine <u>https://www.google.ru/</u>

- abstract database SCOPUS <u>http://www.elsevierscience.ru/products/scopus/</u>

- database Reaxys https://www.reaxys.com/#/search

Training toolkit for self- studies to master the course *:

1. Course of lectures on the discipline "Fundamentals of Drug Design".

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (competences in part) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor of Organic

Chemistry Department
Position, Department

Signature

name and surname

N. E. Golantsov

HEAD OF EDUCATIONAL DEPARTMENT:

Organic Chemistry Department	L. G. Voskressensky		
Name of Department		name and surname	
HEAD OF HIGHER EDUCATION PROG Dean of Science faculty,	RAMME:		
Head of the Department of		L. G. Voskressensky	
Organic Chemistry			
Position, Department	Signature	name and surname	