ФИО: Ястребов Олег Алерсание State Autonomous Educational Institution of Higher Education Должность: Perron Дата подписания: 20:05.2029 17:15:54 UNIVERSITY OF RUSSIA NAMED AFTER PATRICE **LUMUMBA** Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a **RUDN University**

Academy of Engineering

educational division (faculty/institute/academy) as higher education program developer

COURSE SYLLABUS

Structural Dynamics

course title

Recommended by the Didactic Council for the Education Field of:

08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

2025

1. COURSE GOAL(s)

The goal of the course <u>Structural Dynamics</u> is to prepare the future specialist to solve problems and teach him to determine the dynamic characteristics of construction and engineering structures.

Loads that change rapidly in time cause the cross-sections of the structure to move with accelerations, resulting in inertial forces that need to be taken into account in the calculations, in addition, in some cases, stresses that vary in time can occur at certain points of the structure, which leads to material fatigue, so the purpose of the discipline is to teach calculations for the effect of dynamic loads caused by wind gusts, machines, engines and other mechanisms that cause vibrations of structures.

The dynamic calculation is aimed at providing the necessary structural strength and preventing large deformations. Stresses that are variable in time occur in structural elements under the influence of loads that are variable in magnitude or direction, as well as loads that move relative to the designed element. Numerous experiments confirm that under the action of alternating stresses, the destruction of materials occurs at stresses significantly lower than the dangerous stresses under static loading. Solving this problem is also the goal of the discipline.

The objective of the course is to teach students to determine the dynamic effects on structures and take them into account when calculating.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Structural Dynamics</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>«Structural</u>

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
PC-2	Development of project products based on the results of engineering and technical design for urban development activities	PC-2.1 Capable of performing engineering and technical design and developing design products for building structures, grounds and foundations; PC-2.2 Able to perform engineering and technical design and develop design products for engineering systems and engineering structures

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Structural Dynamics</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Structural Dynamics</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project	Digital technologies in	Life Cycle Economics of
	products based on the	construction;	Buildings;
	results of engineering	Structural Design in Steel;	Applications of Finite
	and technical design for	Nanotechnology in Civil	Element Method for Civil
	urban development	Engineering;	Engineering problems;
	activities	Structural Design in	Sustainability in Civil
		Reinforced Concrete;	Engineering;

Building materials:	Optimization Methods in
Special Topics	Civil Engineering;
	Structural Stability;
	Geometric Shaping and
	Analysis of Shells;
	Engineering Systems of
	Buildings;
	Desin Practice;
	Technological Practice;
	Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Structural Dynamics</u> is <u>5</u> credits. *Table 4.1. Academic activities types by periods of the higher education programme*

Type of academic		Total	Semester(s)			
activities		academic	2			
		hours				
Contact academ	nic hours	72	72			
including:						
Lectures (LC)		36	36			
Lab works (LW)		0	0			
Seminars (workshops /		36	36			
tutorials) (S)						
Self-studies		81	81			
academic hours						
Evaluation and		27	27			
assessment academic						
hours						
<i>Course work / project,</i>			2			
credits						
Course	academi	180	180			
workload	c hours					
	credits	5	5			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1. Single Degree	Topic 1.1. Basics of Structural Dynamics	LC, S
of Freedom (SDOF)	Topic 1.2. The Goal of Dynamic Analysis	
Systems	Topic 1.3. The main Dynamic loads on the building	
	Topic 1.4. Single Degree of Freedom System	
Section 2. Free	Topic 2.1. Undamped free Vibration	LC, S
Vibration of Single	Topic 2.2. Energy in undamped free Vibration	
Degree of Freedom	Topic 2.3. Damped free Vibration.	
Systems		
Section 3. Response to	Topic 3.1. Undamped Harmonic Excitations	LC, S
Harmonic Excitation and	Topic 3.2. Damped Harmonic Excitations	
Periodic Excitation	Topic 3.3. Periodic Excitations	
Section 4. Response to Topic 4.1. Response to step force and step force		LC, S
Arbitrary , Step and	with finite rise time	

Modules	Contents (topics)	Academic activities types *
Pulse Excitation	Topic 4.2. Response to Ramp force	
	Topic 4.3. Response to Pulse Excitation	
Section 5. Numerical	Topic 5.1 Linear Interpolation of Excitation	LC, S
Evaluation of Dynamic	Method	
Response	Topic 5.2 Central Difference Method	
	Topic 5.3 Newmark's Methods	
Section 6. Generalized	Topic 6.1 Systems with Rigid body assemblage	LC, S
Single degree of	Topic 6.2 Systems with distributed mass and	
Freedom Systems	elasticity	
	Topic 6.3 Lamped Mass System - Shear Building	

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialized educational / laboratory equipment, software and materials for course study (if necessary)
Lectures	An auditorium for conducting lectures, equipped with a set of specialized furniture; a blackboard (screen) and technical means for multi-media presentations.	
Seminars	A classroom for conducting seminars, group and individual consultations, current and midterm assessment; equipped with a set of specialised furniture and technical means for multimedia presentations.	
Computer Labs	Not required.	
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment	

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Trahair N.S., Bradford M.A., Nethercot D.A., Gardner L. (2023). The Behaviour and Design of Steel Structure to EC3. Fourth edition. Published by Taylor & Francis, New York, 490. https://civteam.files.wordpress.com/2023/03/the-behaviour-and-design-of-steel-structuresto-ec3-2023.pdf

Additional readings:

1. Guddat J., Jongen H.TH. Structural stability in nonlinear optimization : http://dx.doi.org/10.1080/02331938708843275

2. Second order structural theory for the stability analysis of columns/ Российский университет дружбы народов. / Vera V Galishnikova [и др.]. // Structural Mechanics of Engineering Constructions and Buildings. 2018. №14.3. С. 192-197. ISSN 1815-5235 DOI: 10.22363/1815-5235-2018-14-3-192-197 https://cyberleninka.ru/article/n/second-order-structural-theory-for-the-stability-analysis-of columns

3. Chen W.F., Sohal I. Plastic Design and Second-Order Analysis of Steel Frames./ Springer-Verlag New York, 1995. – 509 p.

Internet sources:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru
- EL "Yurayt" http://www.biblio-online.ru
- EL "Student Consultant" <u>www.studentlibrary.ru</u>
- EL "Lan" <u>http://e.lanbook.com/</u>
- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation <u>http://docs.cntd.ru/</u>
- Yandex search engine https://www.yandex.ru/
- Google search engine <u>https://www.google.ru/</u>

- Scopus abstract database <u>http://www.elsevierscience.ru/products/scopus/</u>

The training toolkit and guidelines for a student:

1. Collection of lectures on the course <u>Structural Dynamics</u>.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Structural Dynamics</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

associate professor
position in the education department signature

HEAD OF EDUCATIONAL DEPARTMENT:

Head of the Department

position in the education department

HEAD OF EDUCATIONAL PROGRAMME:

associate professor

position in the education department

Rynkovskaya Marina Igorevna

Last name and first name

Yazyev Serdar Batyrovich

Last name and first name

Rynkovskaya Marina

Igorevna

Last name and first name

signature

signature