AONTHOPE OPLES' FRIENDSHIP UNIVERSITY OF RUSSIA NAMED AFTER PATRICE LUMUMBA (RUDN University)

COURSE SYLLABUS

Environmental Engineering and Climate Change

Recommended by the Didactic Council for the Education Field of: 05.04.06 "Ecology and Nature Management"

The course instruction is implemented within the professional education programme of higher education:

Climate Projects Management

1. COURSE GOAL(s)

The course is designed to help students to obtain basics of the rationale and core concepts guiding an inclusive green economy, to provide students with knowledge, skills and abilities to operative as main actors in the progress and creation of both opportunities and challenges at global and national level to achieve sustainability, resource efficient and socially inclusive development.

• 2. REQUIREMENTS FOR LEARNING OUTCOMES

The process of studying the discipline is aimed at the formation of the following competencies:

Competence code	Competence descriptor	Competence formation indicators
GPC-3	Able to apply environmental research methods to solve	GPC-3.1 knows the principles and methods of environmental monitoring related with different
	research and applied	environmental components
	problems of professional	GPC-3.2 owns analytical methods of pollutants control,
	activity	physical impacts and processing of the received
		information
		GPC-3.3 able to develop environmental monitoring and
		control systems in production and solve applied
		problems in professional activities
PC-1	Able to organize and	PC-1.1 knows the production and organizational
	manage the enterprise	structure of the organization, the regulatory framework
	activities using in-depth	for greenhouse gas management
	knowledge in the field of	PC-1.2 able to organize the management of research,
	greenhouse gas management	scientific, production and expert-analytical work at the
		enterprise
PC-5	Able to develop measures to	PC-5.1 able to identify direct/indirect sources of
	minimize possible risks of	greenhouse gas emissions at all stages of the product life
	climate change for	cycle
	conducting various types of	
	economic activities	

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

Discipline *Environmental Engineering and Climate Change* refers to the **University Disciplines Module** block 1 of the curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course.

Table 3.1

The list of the higher education programme components that contribute to the achievement of the expected learning outcomes

Competence code	Competence descriptor	Previous courses/modules, internships*	Subsequent courses/modules, internships*		
GPC-3	Able to apply environmental research methods to solve research and applied problems of professional activity	No	Carbon Test Areas and GHG Monitoring		

PC-1	Able to organize and manage the enterprise activities using in-depth knowledge in the field of greenhouse gas management	International Standards for GHG Management	Industrial Internship
PC-5	Able to develop measures to minimize possible risks of climate change for conducting various types of economic activities	No	Industrial Internship Research Work (R&D) (obtaining primary skills of research work) Pre-graduate Internship

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course is **4** credit units.

Table 4.1. Types of academic activities during the period of the HE program(me) mastering

Tunes of academic activities		Total hours	Semester(s)						
Types of academic activities		1 otal nours	1	2	3	4			
Contact academic hours									
				-	-				
Lectures	17			17					
Lab works									
Seminars (workshops/tutorials)		17			17				
Self-study		83			83				
Evaluation and assessment (exam; pass/fail gro	27			27					
The total course workload	hours	144			144				
	credits	4			4				

5. COURSE CONTENTS

Table 5.1. The content of the discipline (module) by type of educational work

Title of Course Modules	Content	Types of academic activities
1. Sustainability and	Basic principles of the circular economy. Circular	L, S
circular economy	economy model. Infrastructure of the circular	
	economy. Theoretical foundations of the circular	
	economy. Formation of the subject area, concept and	
	features. The concept of "cradle to cradle". The model	
	of the circular economy and the stages of its	
	formation. Indicators of sustainable development in	
	the field of waste management. Basic principles of the	
	circular economy in the field of waste management.	
2. Climate-neutral resource	Contribution of the waste management sector to the	L, S
management	Earth's climate. Water resources and climate change.	
	Adaptation and mitigation strategies.	
3. Cleaner production	Drinking Water treatment. Water properties, water	L, S
	treatment stages.	

Title of Course Modules	Content	Types of academic activities
4. Green technologies in	Basic characteristics of wastewater. Oil and grease.	L, S
wastewater treatment	Other important wastewater characteristics.	
	Aerobic, anoxic, anaerobic biological treatment.	
	Aerobic biological treatment. Anoxic biological	
	treatment. Anaerobic biological treatment.	
	Microorganisms in wastewater. Biological cells.	
	Ecology of biological wastewater treatment. Reaction	
	kinetics.	

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Classroom for Academic Activity Type	Classroom equipment	Specialized educational / laboratory equipment, software and materials for mastering the course (if necessary)
Lecture	Classroom, equipped with a set of specialized furniture; whiteboard; a set of devices includes portable multimedia projector, laptop, projection screen, stable wireless	Classroom, equipped with a set of specialized furniture; whiteboard; a set of devices includes portable multimedia
Seminars	Classroom, equipped with a set of specialized furniture; whiteboard; a set of devices includes portable multimedia projector, laptop, projection screen, stable wireless	projector, laptop, projection screen, stable wireless Internet connection. Software: Microsoft Windows, MS Office / Office 365, MS Teams, Chrome (latest stable release), Skype. Microsoft Windows 7 corporate. License No. 5190227, date of issue March 16, 2010 MS Office 2007 Prof , License # 6842818, date of issue 09/07/2009
For Self-Study	Classroom for self-study (can be used for seminars and consultations), equipped with a set of devices includes laptop, stable wireless.	No

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main reading:

1. Kanianska R. Green Growth and Green Economy. Textbook to the course Green growth and green economy. Belianum: Banská Bystrica. 2017 (available on TUIS)

Additional reading:

Worldwatch Institute: State of the World 2015: Confronting Hidden Threats to 1. Sustainability, Washington, DC (Island Press). - 2015-

Mazmanian D.A. and Kraft M.E. eds. Toward sustainable communities: Transition and 2. transformations in environmental policy. MIT Press. - 2009.

Bina O. The green economy and sustainable development: an uneasy balance? // 3. Policy. Environment and Planning C: Government and 2013. T. 31. no 6. URL: https://doi.org/10.1068/c1310j

Kasztelan A. Green growth, green economy and sustainable development: terminological 4. Prague Economic Papers. relational discourse // 2017. Τ. 26. and _ URL: https://www.ceeol.com/search/article-detail?id=686936

Mikhno I., Koval V., Shvets G., Garmatiuk O., Tamošiūnienė R. Green economy in 5. sustainable development and improvement of resource efficiency // Central European Business Review (CEBR). 2021. - T. 10. URL: https://www.ceeol.com/search/article-detail?id=941002

Internet-based sources

1. ELS of RUDN University and third-party ELS, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System - RUDN EBS http://lib.rudn.ru/MegaPro/Web

- ELS "University Library Online" http://www.biblioclub.ru
- EBS Yurayt http://www.biblio-online.ru
- ELS "Student Consultant" www.studentlibrary.ru
- EBS "Lan" http://e.lanbook.com/
- EBS "Trinity Bridge"
- 2. Databases and search engines:
- electronic fund of legal and normative-technical documentation http://docs.cntd.ru/
- Yandex search engine https:// www .yandex.ru/
- Google search engine https://www.google.ru/

- abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/ www.greengrowthknowledge.org – Green Growth Knowledge Partnership www.oecd.org - Organisation for Economic Co-operation and Development www.greeneconomycoalition.org - Green Economy Coalition www.gggi.org - Global Green Growth Institute www.eea.europa.eu – European environment agency www.mnr.gov.ru – site of the Ministry of Natural Resources of the Russian Federation; www.unep.org – site of the United Nations Environment Programme;

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system to evaluate the level of competences (competences in part) formation as results of mastering the discipline are specified in the Appendix to the syllabus.

DEVELOPER:

Associate Professor of the ES&PQM Department Position

Signature

Kurbatova A.V. Name, Surname

HEAD OF DEPARTMENT:

Director of ES&PQM Department

Savenkova E.V.

Position	Signature	Name, Surname
HEAD OF PROGRAMME:		
Director of ES&PQM Department		Savenkova E.V.
Position	Signature	Name, Surname

_

Federal State Autonomous Educational Institution for Higher Education PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA NAMED AFTER PATRICE LUMUMBA (RUDN UNIVERSITY)

Institute of Environmental Engineering

ASSESSMENT TOOLKIT

Environmental Engineering and Climate Change

Recommended by the Didactic Council for the Education Field of:

05.04.06 "Ecology and nature management"

The course instruction is implemented within the professional education programme of higher education:

Climate Project Management

Passport to Assessment Toolkit for Course Environmental Engineering and Climate Change

Education Field / Speciality 05.04.06 "Ecology and nature management"/ «Climate Project Management» Course: Environmental Engineering and Climate Change

					Tools to assess higher education programme mastering level									
s in part) under	Course module under assessment			C	lass wo	rk			Self-s	tudies		Exam/Pass-fail assessment	Points for topic	Points for course
Competences (competences in part) under assessment компетенции или ее части		Course topic under assessment	Quiz	Test	Work with lecture materials	Work at the seminars	Lab work	Homework	Research essay/ Library research paper	Calculation and graphic work	Group work project			
GPC-3 PC-1 PC-5	Sustainability and circular economy	Basic principles of the circular economy. Circular economy model. Infrastructure of the circular economy. Theoretical foundations of the circular economy. Formation of the subject area, concept and features. The concept of "cradle to cradle". The model of the circular economy and the				12							4	

		stages of its formation. Indicators of sustainable development in the field of								
		waste management. Basic								
		principles of the circular								
		economy in the field of								
		waste management.								
	Climate-neutral	Contribution of the waste								
GPC-3	resource	management sector to the								
PC-1	management	Earth's climate. Water		12					4	
PC-5		resources and climate		14						
105		change. Adaptation and								
		mitigation strategies.								
GPC-3	Cleaner production	Drinking Water treatment.								
PC-1		Water properties, water		12					6	
PC-5		treatment stages.								
	Green technologies	Basic characteristics of								
	in wastewater	wastewater. Oil and grease.								
	treatment	Other important								
		wastewater characteristics.								
		Aerobic, anoxic, anaerobic								
		biological treatment. Aerobic biological								
GPC-3		treatment. Anoxic								
PC-1		biological treatment.		12					8	
PC-5		Anaerobic biological								
		treatment.								
		Microorganisms in								
		wastewater. Biological								
		cells. Ecology of biological								
		wastewater treatment.								
		Reaction kinetics.								
		TOTAL	20	48			20	12		

Course Environmental Engineering and Climate Change

QUESTION CARD No 1

Developer	(Kurbatova Anna)
signature	
Head of Educational Department	(Savenkova Elena)
signature	

day, month, year

Note * Practice case/task inclusion is subject to the teacher's discretion.

The set of exam question cards is complemented by the assessment criteria developed by the teacher and approved at the department meeting.

Assessment criteria: (*in compliance with the legal regulations in force*)

EXAM QUESTIONS

- 1. What is the difference between the concept of a Green Economy and Sustainable Development?
- 2. What are the implications of a Green Economy for poverty reduction?
- 3. What does the Green Economy imply for biodiversity conservation?
- 4. What implication does a Green Economy have on the notion of economic growth?
- 5. What work must be done during the transition to a green economy?
- 6. What goals have been identified for sustainable economic recovery after the pandemic?

7. What support has been shown for the We Are Still In Declaration, in agreement with the Paris Climate Agreement and its green economic goals?

- 8. Climate Change and Carbon Management
- 9. Biodiversity and Ecosystem Services
- 10. Green Technology and Renewable Energy
- 11. Environmental Law and Social Justice
- 12. Linkage between energy use, pollution and economic growth
- 13. Economic Indicators for Material Recovery Estimation
- 14. Assessment of mechanisms and instruments of climate finance

15. Challenges and opportunities at the crossroads of Environmental Sustainability and Economy research

- 16. Practices on Cleaner Production and Sustainability
- 17. Drivers and Barriers to Cleaner Production
- 18. Integrated process technology for recycling and re-use of industrial and municipal wastewater
- 19. Physicochemical-biotechnological approaches for removal of contaminants from wastewater

Tentative list of assessment tools

N 0	Assessment tool	Assessment tool representation in the kit									
	Class work										
1	Survey/Quiz	A tool of control, organised as a special conversation between a teacher and students on topics related to the course under study, and designed to clarify the amount of students' knowledge in a particular section, topic, problem, etc.	Questions on the course topics /modules								
2	Test	A system of standardised tasks that allows the teacher to automate the procedure for measuring the student's level of knowledge and skills	Tests bank								
3	Control work	A tool of control organised as a classroom lesson, at which students need to independently demonstrate the acquisition and mastering of the educational material of the course topic, section, or sections.	Questions on the course topics /modules								
4	Round table, discussion, polemic, dispute, debate, (class work)	Evaluation tools that allow the teacher to engage students in the process of discussing controversial issues, problems and assess their ability to argue their own point of view.	List of themes for round tables, discussions, polemics, disputes, debates.								
5	Business game and/or role play	Joint activities of a student group under the teacher's control to solve educational and professionally oriented tasks through the simulation of a real-world problem; this activity allows the teacher to assess the students' ability to analyse and solve typical professional challenges.	Topic (problem), concept, roles and expected results for each game								
6.	Presentation (defence) of project/report/ Library research paper /briefs *	A tool for monitoring the students' ability to present the work results to the audience.	Themes for projects/reports/ Library research paper/ briefs								
7	Pass/Fail assessment	A tool for checking the quality of students' performance of laboratory work, acquisition and mastering of the practice training and seminar educational material, successful completion of the advanced field internship and pre-graduate internship and fulfillment of all training assignments in the course of these internships in accordance with the approved programme.	Tasks examples								
8	Exam	The evaluation of the student's work during the semester (year, the entire period of study, etc.); it is designed to identify the level, soundness and systematic nature of theoretical and practical knowledge gained by the student, formation of independent work skills, development of creative	Examples of tasks/questions/exam question cards								

		thinking ability to synthesize the acquired	
		thinking, ability to synthesise the acquired knowledge and apply it to solve practice tasks.	
9	Case	A problem-solving task in which the student is	Assignments to solve
9	Case	asked to comprehend the real work-related	Assignments to solve the case
		(occupational) situation necessary to solve the	the case
		problem.	
10	Multi-level tasks	The tasks and assignments differ in terms of the	Set of multi-level tasks
10	and assignments	following levels:	and assignments with
	with varying	a) reproductive level allows the teacher to	varying difficulty
	difficulty	evaluate and diagnose the students' knowledge	varying unneury
	anneurry	of factual material (basic concepts, algorithms,	
		facts) and the students' ability to correctly use	
		special terms and concepts, recognize objects of	
		study within a certain section of the discipline,	
		b) reconstructive level allows the teacher to	
		evaluate and diagnose the students' abilities to	
		synthesise, analyse, generalise factual and	
		theoretical material and formulate specific	
		conclusions, establish cause-and-effect	
		relationships,	
		c) creative level allows to evaluate and	
		diagnose students' skills to integrate knowledge	
		of various fields, argue their own point of view.	
		Self- studies	
1	Calculation and	A tool for checking students' skills in applying	Set of tasks for
	graphic work	the acquired knowledge according to a	calculation and graphic
		predetermined methodology in task solving or	work
		fulfilling assignments for a module or discipline	
		as a whole.	
2 Course work/project A type of		A type of independent written work aimed at the	Course assignment
		creative development of general professional and	themes
		specialised professional disciplines (modules)	
		and the development of relevant professional	
		competences	
3	Project	The final "product" that results from planning	Themes for team-based
		and performance of educational and research	or individual projects
		tasks set; it allows the teacher to assess the	
		students' ability to independently shape their	
		knowledge in the course of solving practice tasks	
		and problems, navigate in the information environment and the students' level of	
		analytical, research skills, skills of practical and creative thinking; it can be implemented	
		individually or by a group of students.	
4	Reports, briefs	The product of the student's independent work,	Themes for reports,
•		which is a public performance on the	briefs
		presentation of the results of solving a specific	
		educational, practical, research or scientific topic.	
5	Standard calculations	A tool to test skills in applying the acquired	Set of tasks for
-		knowledge, according to a predetermined	standard calculations
		methodology, solving tasks or fulfilling	
	1		L

		assignments for a module or discipline as a whole.	
6	Homework	The tasks and assignments differ in terms of the following levels: a) reproductive level allows the teacher to evaluate and diagnose the students' knowledge of factual material (basic concepts, algorithms, facts) and the students' ability to correctly use special terms and concepts, recognize objects of study within a certain section of the discipline, b) reconstructive level allows the teacher to evaluate and diagnose the students' abilities to synthesise, analyse, generalise factual and theoretical material and formulate specific conclusions, establish cause-and-effect relationships, c) creative level allows the teacher to evaluate and diagnose students' skills to integrate knowledge of various fields, argue their own point of view.	Set of multi-level tasks and assignments with varying difficulty

Department of Environmental Safety and Product Quality Management

Set of assignments for control work

for the course Environmental Engineering and Climate Change

What is the type of pollution where the pollutants reach the water body in points called?

- a) Point-source pollution
- b) Diffuse pollution
- c) Point-source contamination
- d) Diffuse contamination

Answer: a

Explanation: In point-source pollution, the pollutants reach the water body in points concentrated in space. Usually, the discharge of domestic and industrial wastewater generates point-source pollution.

What kind of molecule is water?

1.Non- polar 2.Hydrogen **3.Polar**

Is water known as the universal solvent?

- 1. Yes
- 2. No

The Hydrogen atoms in H2O are considered positive in a water molecule

- 1. Yes
- 2. No

Why does ice float in water?

1.Because of stronger hydrogen bonds at the surface

2. The density of water as a solid is less than the density of water as a liquid

3.Surface tension helps it float

4.It is more dense

Assessment criteria:

(in compliance with the legal regulations in force)

Department of Environmental Safety and Product Quality Management

Team-based or individual creative assignments/projects

for the course Environmental Engineering and Climate Change

Water pollution occurs when harmful substances—often chemicals or microorganisms contaminate a stream, river, lake, ocean, aquifer, or other body of water, degrading water quality and rendering it toxic to humans or the environment.

Water is uniquely vulnerable to pollution. Known as a "universal solvent," water is able to dissolve more substances than any other liquid on earth. It's the reason we have Kool-Aid and brilliant blue waterfalls. It's also why water is so easily polluted. Toxic substances from farms, towns, and factories readily dissolve into and mix with it, causing water pollution.

The purpose of the project is to asses the water pollution in the urban area.

Algorithm

This is Seine River in Paris. It flows very fast, its water is muddy. Please, describe all the possible sources of water pollution in the Siene.

Task defense form – Power Point presentation of the report.

Assessment criteria: *(in compliance with the legal regulations in force)*

Developer _____ (Anna Kurbatova)

day, month, year

DEVELOPER:

Associate Professor of the	Kurbatova A.I.		
ES&PQM Department			
Position	Signature	Name, Surname	
HEAD OF DEPARTMENT:			
Director of ES&PQM Department		Savenkova E.V.	
Position	Signature	Name, Surname	
HEAD OF PROGRAMME:			
Director of ES&PQM Department		Savenkova E.V.	
Position	Signature	Name, Surname	