Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олет Arederal State Autonomous Educational Institution for Higher Education Должность Ректор I ES2 FRIENDSHIP UNIVERSITY OF RUSSIA named after P. Lumumba (RUDN University)

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

Science faculty

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS
Fundamentals of Biotechnology
course title
Recommended by the Didactic Council for the Education Field of:
04.04.01 «Chemistry»
field of studies / speciality code and title
The course instruction is implemented within the professional education programmo of higher education:
«Fundamental and applied Chemistry»
higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course of « Fundamentals of Biotechnology » is in the formation of the system of knowledge about biological targets, structure-activity relationship and modern methodology for the design of medicinal substances.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "Fundamentals of Biotechnology" is aimed at developing the following competencies (parts of competencies) among students:

Table 2.1. List of competences that students acquire through the course study

Competence code	Competence descriptor	Competence formation indicators (within this course)
PC-1	The ability to plan work and choose adequate methods for solving research problems in the chosen field of chemistry, chemical technology or sciences related to chemistry	PC-1.1. Draws up a general research plan and detailed plans for individual stages

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course "Fundamentals of Biotechnology" refers to the elective component of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1/ The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competenc	Competence	Previous	Subsequent
e code	descriptor	courses/modules*	courses/modules*
PC-1	The ability to plan		Domino reactions in the
	work and choose		synthesis of heterocycles
	adequate methods		NMR of organic compounds
	for solving research		Molecular spectral analysis
	problems in the		Fundamentals of drug design
	chosen field of		Mass spectrometry of organic
	chemistry, chemical		compounds
	technology or		Chemistry of natural
	sciences related to		compounds
	chemistry		Chemistry of heterocyclic
			compounds
			Stereochemistry
			Fundamentals of experimental
			research methods in CHC
			Experimental research
			methods in organic chemistry

Competenc e code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
			research
			Research work
			Undergraduate practice

^{*} To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

Course workload of the course «Fundamentals of Biotechnology» is 2 credits.

Table 4.1. Types of academic activities during the periods of higher education

programme mastering (full-time training)

Types of academic activities		Total	Semester(-s)			
		academic hours	1	2	3	4
Contact academic hours		36	36			
including:						
Lectures (LC)		36	36			
Lab Works (LW)						
Seminars (PC)						
Seminars (workshops/tutorials) (S)		18	18			
Evaluation and assessment (exam/passing/failing grade)		18	18			
Course workload	academic hours	72	72			
	credits	2	2			

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Section 1. Introduction. Objects of	Theme 1.1. The subject of biotechnology. History of the development of biotechnology. Goals and objectives of biotechnology. The main modern fields of application and prospects for biotechnological processes.	LC
biotechnological productions.	Theme 1.2. Classification of organisms-producers. The structure and chemical composition of the cells of bacteria, plants, fungi and animals. Criteria for the selection of biological objects.	LC
Section 2. Fundamentals	Theme 2.1. Structure and functions of DNA and RNA. Genetic engineering methods for creating objects of biotechnological production. Principles of genetic engineering.	LC
of genetic engineering. Biotechnological process.	Theme 2.2. The main stages of biotechnological production. Cultivation of biological objects. Designs of bioreactors providing optimal conditions for fermentation.	LC
Section 3. Fermentation and fermentation	Theme 3.1. Glycolysis and fermentation. Production of ethanol and spirits. The use of yeast	LC

Course module title	Course module contents (topics)	Academic activities types
	for the production of protein mass. Butyric and	
	acetone-butyl fermentation.	
production.	Theme 3.2. Lactic acid fermentation. Composition	
	and processing of milk. Production of dairy	LC
	products and cheese.	
	Theme 4.1. Applications and types of enzymes in	
	biotechnology, industry, household chemicals,	LC
Section 4. Enzymes in	medicine. Methods for isolation and purification	LC
biotechnology. Production	of enzymes. Immobilized enzymes.	
of organic acids and	Theme 4.2. Production of acids: acetic, propionic,	
carbohydrates.	gluconic, citric. Biotechnological production of	LC
	fructose syrup, polysaccharides (dextrans,	LC
	xanthan). Production of α-amino acids.	

^{* -} to be filled in only for <u>full</u> -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom Equipment and Technology Support Requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

- 1. *Basic Biotechnology*, 3. ed., reprinted.; Ratledge, C., Kristiansen, B., Eds.; Cambridge Univ. Press: Cambridge, 2007.
- 2. Glick, B. R.; Pasternak, J. J. *Molecular Biotechnology: Principles and Applications of Recombinant DNA*, 3. ed.; American Society for Microbiology: Washington, DC, 2003.

Additional readings:

- 1. Основы биотехнологии: Учебное пособие / Т.А. Егорова, С.М. Клунова, Е.А. Живухина; Т.А.Егорова и др. 2-е изд., стереотип. М. : Академия, 2005. 208 с.
- 2. Основы биотехнологии: Учебное пособие / Н.С. Простаков, Т.Н. Борисова; РУДН. М.: Изд-во РУДН, 1992. 111 с.
- 3. Биотехнология. Принципы и применение / Под ред. И.Хиггинса; Пер. с англ. А.С.Антонова; Под ред. А.А.Баева. М.: Мир, 1988. 479 с.

- 4. Б.Глик, Дж. Пастернак. Молекулярная биотехнология. Принципы и применение. Пер. с англ. – М: Мир, 2002.
 - 5. Р.Д.Шмид. Наглядная биотехнология. Пер. с нем. М., Бином, 2009. Internet sources
- 1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:
 - RUDN Electronic Library System (RUDN ELS) http://lib.rudn.ru/MegaPro/Web
 - EL "University Library Online" http://www.biblioclub.ru
 - EL "Yurayt" http://www.biblio-online.ru
 - EL "Student Consultant" www.studentlibrary.ru
 - EL "Lan" http://e.lanbook.com/
 - EL "Trinity Bridge"

DEVELOPERS:

- Journal "Nature Biotechnology": https://www.nature.com/nbt/
- 2. Databases and search engines:
- Yandex search engine https://www.yandex.ru/
- Google search engine https://www.google.ru/
- abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/
- database Reaxys https://www.reaxys.com/#/search

Training toolkit for self-studies to master the course *:

- 1. Course of lectures on the discipline "Fundamentals of Drug Design".
- * The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

Associate Professor of Organic N. E. Golantsov **Chemistry Department** Position, Department Signature name and surname **HEAD OF EDUCATIONAL DEPARTMENT: Organic Chemistry Department** L. G. Voskressensky Name of Department name and surname HEAD OF HIGHER EDUCATION PROGRAMME: Dean of Science faculty, **Head of the Department of** L. G. Voskressensky **Organic Chemistry** Position, Department

Signature

name and surname