Документ подписан простой электронной подписью Информация о владельце:

ФИО: Ястребов Олег Александрай State Autonomous Educational Institution of Higher Education Должность: Ректор PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA NAMED AFTER PATRICE

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

LUMUMBA RUDN University

Academy of Engineering

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Structural Design in Steel

course title

Recommended by the Didactic Council for the Education Field of:

08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course <u>Structural Design in Steel</u> is to gain knowledge, skills, skills and experience in the field of theory and design of buildings and structures that characterize the stages of competence formation and ensure the achievement of the planned results of the development of the educational program. Produce graduates who are committed to a career in structural engineering with a range of employers. Produce graduates equipped to take up professional employment in the construction industry and become lifelong learners with an appreciation of the value to society of an education in structural engineering. Produce graduates who have knowhow and understanding of the key aspects of structural engineering. Allow graduates to acquire and develop problem-solving skills, and subject-specific skills. Develop graduates who bring practical solutions to design prolems and who have the technical skills to see their ideas through to realization.

The main objectives of the course Structural Design in Steel are:

- training of specialists of a wide profile in industrial and civil construction with an indepth study of the basics of design, manufacture, installation, reinforcement of metal structures of buildings and structures;
- formation of skills of calculations and design of metal structures from the point of view of specific engineering tasks using design norms, standards, reference books;
 - obtaining skills in the use of automation tools for the design of metal building structures.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Structural Design in Steel</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>«Structural Design in Steel»</u>

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
	1 1 1 1	PC-2.1 Capable of performing engineering and technical design and developing design products for
		building structures, grounds and foundations

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Structural Design in Steel</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Structural Design in Steel</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project		Life Cycle Economics of
	products based on the		Buildings;
	results of engineering		Structural Design in
	and technical design for		Reinforced Concrete: Special
	urban development		Topics;
	activities		Structural Dynamics;
			Structural Design in Steel:
			Special Topics;

Modelling of Construction
Processes;
Applications of Finite
Element Method for Civil
Engineering problems;
Sustainability in Civil
Engineering;
Optimization Methods in
Civil Engineering;
Structural Stability;
Geometric Shaping and
Analysis of Shells;
Engineering Systems of
Buildings;
Desin Practice;
Technological Practice;
Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Structural Design in Steel</u> is <u>4</u> credits.

Table 4.1. Academic activities types by periods of the higher education programme

Type of academic		Total	Semester(s)			
activities		academic	1			
		hours				
Contact academic hours		36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW	Lab works (LW)		0			
Seminars (workshops /		18	18			
tutorials) (S)						
Self-studies		81	81			
academic hours	academic hours					
Evaluation and		27	27			
assessment academic						
hours						
Course work / project,						
credits						
Course	academi	144	144			
workload	c hours					
	credits	4	4			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1.	Introduction: Building codes, Seismic forces,	LC, S
Introduction to steel	Analysis, and design of complex structures. Loads,	
structures	philosophy of design, steel and properties	
Section 2.	Review of tension members, Review of	LC, S
Members of steel struc-	compression members, Review of flexural	
tures	members , Review of flexural members, Pure	

Modules Contents (topics)		Academic activities types *
	torsion of homogeneous sections; shear stresses	
	due to bending of thin-wall open x-section ,	
	Torsional stresses in I-shaped steel sections	
Section 3. Analogy between torsional and plane bending		LC, S
Steel structures analysis	and resistance factor design for torsion , Allowable	
	strength design for torsion, torsional buckling ,	
	Lateral support of beams; elastic and inelastic	
	lateral torsional buckling of beams	
Section 4.	Load and resistance factor design-I shaped beams;	LC, S
Steel structures design	allowable strength design – I shaped beams	
_	Allowable strength design – I shaped beams,	
	effective lateral unbraced length, Lateral bracing	
	design	

^{* -} to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of	Classroom equipment	Specialized educational /
academic		laboratory equipment,
activities		software and materials for
		course study (if necessary)
Lectures	An auditorium for conducting lectures,	
	equipped with a set of specialized furniture;	
	a blackboard (screen) and technical means	
	for multi-media presentations.	
Seminars	A classroom for conducting seminars, group	Computers, Multimedia
	and individual consultations, current and	projector, Screen for
	midterm assessment; equipped with a set of	projector, Whiteboard,
	specialised furniture and technical means for	WiFi
	multimedia presentations.	
Computer Labs	Not required	
Self-studies	A classroom for independent work of	
	students (can be used for seminars and	
	consultations), equipped with a set of	
	specialised furniture and computers with	
	access to the electronic information and	
	educational environment	

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

- 1. Handbook of structural steel connection design and details. Akbar R. Tamboli. https://drive.google.com/file/d/1F2qQ2Ae8VOOyP-p2K4JxByBWjcaFtBvl/view Additional readings:
- 1. Filippo Berto (Ed.), Ricardo Branco (Ed.). Mechanical Behavior of High-Strength Low-Alloy Steels [Электронный ресурс] 2023. 1 с. ISBN 9783038972044 URL: https://www.mdpi.com/books/pdfview/book/767
- 2. Smart Lesley, Gagan Michael. Structures of metals // The Molecular World: The Third Dimension. 2002. ISBN 0-85404-660-7 DOI: http://dx.doi.org/10.1039/9781847557902-00015

- 3. Al-Samman T. Material and Process Design for Lightweight Structures,2019. 1 c. ISBN 9783038979586 URL: https://mdpi.com/books/pdfview/book/1319 Internet sources:
- 1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:
 - RUDN Electronic Library System (RUDN ELS) http://lib.rudn.ru/MegaPro/Web
 - EL "University Library Online" http://www.biblioclub.ru
 - EL "Yurayt" http://www.biblio-online.ru
 - EL "Student Consultant" www.studentlibrary.ru
 - EL "Lan" http://e.lanbook.com/
 - EL "Trinity Bridge"
- 2. Databases and search engines:
 - electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/
 - Yandex search engine https://www.yandex.ru/
 - Google search engine https://www.google.ru/
 - Scopus abstract database http://www.elsevierscience.ru/products/scopus/

The training toolkit and guidelines for a student:

- 1. Collection of lectures on the course <u>Structural Design in Steel</u>.
- * The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Structural Design in Steel</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

assistant position in the education department signature Last name and first name HEAD OF EDUCATIONAL DEPARTMENT: Head of the Department position in the education department signature Vazyev Serdar Batyrovich Last name and first name HEAD OF EDUCATIONAL PROGRAMME: Rynkovskaya Marina

signature

Igorevna

Last name and first name

DEVELOPERS:

associate professor

position in the education department