Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребов Олег Александрович

Должность: Ректор

Дата подписания: 15.10.2025 18:04:48

Приложение к рабочей программе дисциплины (практики)

Уникальный програждений ключ: са953а0120d891083f9396 3078ef1a989dae18а «Российский университет дружбы народов имени Патриса Лумумбы» (РУДН)

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ (ПРАКТИКЕ)

«ІТ В МОДЕЛИРОВАНИИ»

(наименование дисциплины/практики)

Оценочные материалы рекомендованы МССН для направления подготовки/ специальности:

07.03.04 ГРАДОСТРОИТЕЛЬСТВО

(код и наименование направления подготовки/специальности)

Освоение дисциплины/практики ведется в рамках реализации основной профессиональной образовательной программы (ОП ВО, профиль/ специализация):

АРХИТЕКТУРНО-ГРАДОСТРОИТЕЛЬНОЕ ПРОЕКТИРОВАНИЕ

(направленность и реквизиты открытия ОП ВО)

Москва, 2025

1. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ ПО ДИСЦИПЛИНЕ

Примерный перечень вопросов для проведения текущего контроля успеваемости:

- 1. Дайте определение компьютерного моделирования. Каковы его основные цели и преимущества перед натурным экспериментом?
- 2. Назовите основные классы моделей (детерминированные/стохастические, дискретные/непрерывные, статические/динамические) и их отличия.
- 3. Что такое «верификация» и «валидация» модели? В чем между ними различие?
- 4. Опишите основные этапы процесса компьютерного моделирования (от постановки задачи до анализа результатов).
- 5. Каковы основные принципы объектно-ориентированного моделирования и его преимущества?
- 6. Что такое «имитационное моделирование» и в каких случаях его применение наиболее эффективно?
- 7. Каковы основные области применения и виды моделей в архитектуре и градостроительстве (BIM, GIS, 3D-моделирование)?
- 8. Что такое «ВІМ-модель» и каковы её ключевые отличия от традиционного 3D-моделирования?
- 9. Каковы основные принципы и структура информационного моделирования зданий (ВІМ) на разных стадиях жизненного цикла?
- 10. Что такое «графические данные» и «атрибутивные данные» в ГИС? Как они связаны?
- 11. Каковы основные методы и алгоритмы визуализации результатов моделирования (трассировка лучей, радиозитность)?
- 12. Что такое «параметрическое и алгоритмическое моделирование»? Какова роль скриптинга (например, в Grasshopper) в создании таких моделей?
- 13. Каковы основные типы данных и структуры данных, используемые в компьютерном моделировании?
- 14. Что такое «цифровой двойник» (digital twin) и чем он отличается от традиционной компьютерной модели?
- 15. Каковы основные методы и инструменты для анализа и оптимизации моделей (анализ чувствительности, калибровка)?
- 16. Каковы основные принципы работы с большими данными (Big Data) в контексте градостроительного и архитектурного моделирования?
- 17. Что такое «VR/AR-технологии» и как они используются для визуализации и анализа моделей?
- 18. Каковы основные критерии выбора программного обеспечения для решения конкретной задачи моделирования?
- 19. Что такое «сетевое моделирование» и каковы его основные области применения (транспортные, логистические, социальные сети)?
- 20. Каковы современные тенденции и перспективы развития IT в моделировании (искусственный интеллект, машинное обучение, облачные вычисления)?

2. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

Промежуточная аттестация по дисциплине проводится в форме аттестационного испытания по итогам изучения дисциплины (по окончании каждого учебного семестра). Виды аттестационного испытания — ПИСЬМЕННЫЙ ЭКЗАМЕН / ЗАЧЕТ С ОЦЕНКОЙ (в соответствии с утвержденным учебным планом).

Аттестационное испытание проводится по билетам, содержащим три вопроса по курсу дисциплины. По результатам аттестационного испытания обучающийся может получить от 1 до 25 баллов.

Вопросы для подготовки к аттестационному испытанию по дисциплине:

- 1. Понятие «моделирования» в контексте IT. Классификация видов моделей (математические, имитационные, графические).
- 2. Эволюция роли IT в моделировании: от первых вычислительных машин до современных комплексных систем.
- 3. Понятие «цифрового двойника» (Digital Twin). Чем он отличается от традиционной 3D-модели?
- 4. Основные этапы процесса компьютерного моделирования (постановка задачи, разработка модели, верификация, валидация, анализ результатов).
- 5. Преимущества и ограничения компьютерного моделирования по сравнению с натурными экспериментами.
- 6. Основные принципы и виды 3D-моделирования: каркасное, поверхностное, твердотельное.
- 7. Сравнительная характеристика основных методов 3D-моделирования: полигональное, NURBS, воксельное.
- 8. Понятие параметрического и прямого (Direct Modeling) моделирования. Их области применения.
- 9. Роль и принципы работы систем рендеринга в визуализации моделей. Основные виды рендеринга (Realtime, Offline).
- 10. Понятие текстур и материалов (шейдеров) в компьютерной графике. Процедурные текстуры vs. растровые.
- 11. Основные принципы и концепция технологии информационного моделирования зданий (BIM).
- 12. Уровни детализации (LOD) в ВІМ-модели: назначение и классификация.
- 13. Структура и состав информационной ВІМ-модели (архитектура, конструкции, инженерные системы).

- 14. Роль IFC-формата в ВІМ-процессе как открытого стандарта для обмена данными.
- 15. Преимущества и проблемы внедрения ВІМ-технологии на разных стадиях жизненного цикла объекта.
- 16. Понятие и области применения конечно-элементного анализа (FEA) в проектировании.
- 17. Понятие и области применения вычислительной гидродинамики (CFD).
- 18. Основные этапы имитационного моделирования процессов и систем.
- 19. Понятие агентного моделирования и его применение в градостроительстве (моделирование транспортных и пешеходных потоков).
- 20. Применение алгоритмов машинного обучения и искусственного интеллекта в задачах моделирования.
- 21. Классификация программного обеспечения для моделирования (CAD, CAE, BIM, GIS).
- 22. Принципы интеграции CAD, BIM и GIS-систем в едином информационном пространстве проекта.
- 23. Понятие «облачных» технологий в моделировании. Модель SaaS (Software as a Service).
- 24. Принципы управления жизненным циклом данных (PLM) в контексте сложных проектов.
- 25. Роль стандартов и открытых данных в обеспечении совместимости между различными программными комплексами.
- 26. Применение VR (виртуальной реальности) и AR (дополненной реальности) для интерактивной работы с моделями.
- 27. Понятие генеративного дизайна (Generative Design). Какова роль алгоритмов в поиске оптимальных решений?
- 28. Применение IT-моделирования в задачах «умного города» (Smart City).
- 29. Роль больших данных (Big Data) и интернета вещей (IoT) в создании и актуализации цифровых моделей.
- 30. Основные вызовы и перспективы развития IT в моделировании (кибербезопасность, требования к вычислительным ресурсам, этика использования ИИ).

Таблица 2. Шкала и критерии оценивания ответов обучающихся на аттестационном испытании

	Баллы		
Критерии оценки ответа	Ответ не соответствует критерию	Ответ частично соответствует критерию	Ответ полностью соответствует критерию
Обучающийся дает ответ без наводящих вопросов преподавателя	0	1-4	5
Обучающийся практически не пользуется подготовленной рукописью ответа	0	1-4	5
Ответ показывает уверенное владение обучающего терминологическим и методологическим аппаратом дисциплины/модуля	0	1-4	5
Ответ имеет четкую логическую структуру	0	1-4	5
Ответ показывает понимание обучающимся связей между предметом вопроса и другими разделами дисциплины/модуля и/или другими дисциплинами/ модулями ОП	0	1-4	5
ИТОГО, баллов за ответ			25