Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 23.05.2024 10:22:01

Уникальный программный ключ:

Аграрно-технологический институт

ca953a0120d891083f9396730 (наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

36.03.01 ВЕТЕРИНАРНО-САНИТАРНАЯ ЭКСПЕРТИЗА

(код и наименование направления подготовки/специальности)

Освоение **ДИСШИПЛИНЫ** велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

ВЕТЕРИНАРНО-САНИТАРНАЯ ЭКСПЕРТИЗА

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Физическая и коллоидная химия» входит в программу бакалавриата «Ветеринарно-санитарная экспертиза» по направлению 36.03.01 «Ветеринарно-санитарная экспертиза» и изучается во 2 семестре 1 курса. Дисциплину реализует Кафедра физической и коллоидной химии. Дисциплина состоит из 7 разделов и 29 тем и направлена на изучение физико- химических и коллоидно-химических процессов, протекающих в природе и в биологических системах.

Целью освоения дисциплины является раскрытие связей между физическими и химическими явлениями и понимание сущности физико- химических и коллоиднохимических процессов, протекающих в природе и в биологических системах, приобретение студентами знаний о физико-химических закономерностях химических процессов, важных физиологических понимания процессов И ДЛЯ получения высокоэффективных лекарственных средств; освоение студентами инструментальных методов физикохимических измерений формирование практических навыков выполнения физикорасчетов, формулам и математической обработки химических ПО экспериментов физико-химических измерений. Формирование представления о роли и месте физической и коллоидной химии в ветеринарии и интеграции полученных знаний с вопросами дисциплин профессионального цикла для понимания современных форм лекарственных средств, рациональной технологией их получения, стабилизации и хранения.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Физическая и коллоидная химия» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-4	Способен обосновывать и реализовывать в профессиональной деятельности современные технологии с использованием приборно-инструментальной базы и использовать основные естественные, биологические и профессиональные понятия, а также методы при решении общепрофессиональных задач	ОПК-4.1 Владеет понятийным и методологическим аппаратом базовых естественных наук на уровне, достаточном для полноценной профессиональной деятельности на современном уровне;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Физическая и коллоидная химия» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Физическая и коллоидная химия».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
дея исг ин ОПК-4 и	пособен обосновывать и реализовывать в профессиональной ятельности современные технологии с пользованием приборно-иструментальной базы и использовать основные естественные, биологические и профессиональные онятия, а также методы при решении бщепрофессиональных задач	Прикладная анатомия животных; Неорганическая и аналитическая химия; Латинский язык**; Латинский язык - ветеринарная терминология**;	Прикладная анатомия животных; Цитология, гистология и эмбриология; Вирусология и биотехнология; Ветеринарная микробиология и микология; Биологическая химия; Токсикология с основами фармакологии; Патологическая анатомия; Патологическая физиология технология переработки продуктов животноводства; Производственный ветеринарно-санитарный контроль; Организация лабораторной деятельности; Учебная практика; Ветеринарно-санитарная практика; Технологическая научно-исследовательская практико исследовательская практика с подготовкой научного квалификационног проекта **;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Физическая и коллоидная химия» составляет «2» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur vinofinoŭ poforti	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			2	
Контактная работа, ак.ч.	34		34	
Лекции (ЛК)	17		17	
Лабораторные работы (ЛР)	17		17	
Практические/семинарские занятия (СЗ)	0		0	
Самостоятельная работа обучающихся, ак.ч.	29		29	
Контроль (экзамен/зачет с оценкой), ак.ч.	9		9	
Общая трудоемкость дисциплины	ак.ч.	72	72	
	зач.ед.	2	2	

Общая трудоемкость дисциплины «Физическая и коллоидная химия» составляет «2» зачетные единицы.

Таблица 4.2. Виды учебной работы по периодам освоения образовательной программы высшего образования для очно-заочной формы обучения.

Dur magazi nagazi n	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			2	
Контактная работа, ак.ч.	17		17	
Лекции (ЛК)	0		0	
Лабораторные работы (ЛР)	17		17	
Практические/семинарские занятия (СЗ)	0		0	
Самостоятельная работа обучающихся, ак.ч.	51		51	
Контроль (экзамен/зачет с оценкой), ак.ч.	4		4	
Общая трудоемкость дисциплины	ак.ч.	72	72	
	зач.ед.	2	2	

Общая трудоемкость дисциплины «Физическая и коллоидная химия» составляет «2» зачетные единицы. Таблица 4.3. Виды учебной работы по периодам освоения образовательной программы высшего образования для заочной формы обучения.

Вид учебной работы	ВСЕГО, ак.ч.		Семестр(-ы)	
вид учений рассты			2	
Контактная работа, ак.ч.	4		4	
Лекции (ЛК)	0		0	
Лабораторные работы (ЛР)	4		4	
Практические/семинарские занятия (С3)	0		0	
Самостоятельная работа обучающихся, ак.ч.	65		65	
Контроль (экзамен/зачет с оценкой), ак.ч.	3		3	
Общая трудоемкость дисциплины	ак.ч. 72		72	
	зач.ед.	2	2	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	иолица 5.1. Сооержани Наименование раздела дисциплины	,	Содержание раздела (темы)	
	Фазовые равновесия. Свойства растворов.	1.1	Виды растворов: жидкие, газовые, твердые. Термодинамика растворов. Химический потенциал компонента раствора. Типы растворов. Гетерогенные многокомпонентные системы.	работы* ЛК, ЛР
Раздел 1		1.2	Правило фаз Гиббса. Однокомпонентные гетерогенные системы. Уравнение Клапейрона-Клаузиуса. Диаграммы состояния воды.	ЛК, ЛР
		1.3	Характеристика бинарных систем. Число параметров и число фаз. Равновесие между жидким раствором и паром. Закон Рауля. Отклонения от закона Рауля для неидеальных жидких растворов. Диаграммы состояния жидкость-пар для бинарных систем. Правило рычага. Азеотропные растворы. Фракционная перегонка. Ограниченная растворимость жидкостей. Экстракция.	ЛК, ЛР
		1.4	Растворимость газов в жидкостях. Закон Сеченова. Криоскопия и эбулиоскопия. Осмос. Коллигативные свойства растворов электролитов. Изотонический коэффициент Вант-Гоффа.	ЛК, ЛР
		1.5	Равновесия между твердыми фазами и расплавами. Типы диаграмм плавкости. Физико-химический анализ	ЛК, ЛР
Раздел 2	Электрохимия	2.1	Отличия свойств растворов электролитов от свойств растворов неэлектролитов. Теория электролитической диссоциации Аррениуса. Ионные равновесия в растворах. Константы диссоциации. Ионное производное воды. Водородный показатель. Буферные растворы. Причины устойчивости ионных систем. Ионная сила раствора.	ЛК, ЛР
		2.2	Электропроводность растворов электролитов. Удельная, эквивалентная и молярная электропроводности растворов электролитов и их зависимость от концентрации. Правило Кольрауша. Подвижность ионов. Применение кондуктометрии в аналитической химии.	ЛК, ЛР
		2.3	Механизм возникновения скачка потенциала на границе раздела фаз. Диффузионный потенциал. Электродные потенциалы. Уравнение Нернста. Стандартные электродные потенциалы. Водородный электрод. Электроды I и II рода, окислительно- восстановительные, ионоселективные. Измерение рН.	ЛК, ЛР
		2.4	Гальванические элементы и электродвижущая сила. Электрохимический и концентрационный элементы. Уравнение Нернста. Расчет стандартной энергии Гиббса.	ЛК, ЛР
Раздел 3	Химическая кинетика. Катализ.	3.1	Основные определения. Простые и сложные реакции. Скорость реакции. Кинетический закон действующих масс. Кинетическое уравнение, молекулярность и порядок реакции. Кинетика простых реакций нулевого, первого и второго порядков. Период полупревращения. Методы	ЛК, ЛР

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*	
			определения порядка реакции.		
		3.2	Сложные реакции: обратимые, параллельные,	ЛК, ЛР	
		3.2	последовательные и сопряжённые.	JIK, JIP	
			Влияние температуры на скорость реакции.		
		3.3	Правило Вант- Гоффа и уравнение Аррениуса.	ЛК, ЛР	
		3.3	Определение срока годности лекарств и условий	3110, 311	
			хранения.		
			Теория активных столкновений. Энергия		
			активации реакции, методы определения.		
		3.4	Теория активированного комплекса.	ЛК, ЛР	
			Особенности реакции в жидких растворах.		
	•		Фотохимические реакции.		
			Катализ. Кинетика гомогенных каталитических реакций. Ферментативный катализ. Уравнение		
		3.5	михаэлиса – Ментена. Ингибиторы.	ЛК, ЛР	
			Гетерогенный катализ.		
			Поверхностное натяжение и явления на границе		
			раздела фаз: адсорбция, адгезия, смачивание.		
			Флотация как метод разделения дисперсных фаз.		
			Лиофобные и лиофильные поверхности.		
		4.1	Адгезия. Уравнение Дюпре. Смачивание.	ЛК, ЛР	
			Адсорбционная теория Гиббса. Адсорбция на		
			жидкой поверхности. Поверхностно-активные		
			вещества (ПАВ). Правило Дюкло-Траубе.		
	Поверхностные явления.		Уравнение Шишковского		
Раздел 4	Адсорбция.		Физическая адсорбция, хемосорбция.		
	л деороция.		Модельные теории обратимой адсорбции на		
			однородных поверхностях. Изотермы адсорбции		
		4.0	Генри и Лэнгмюра. Предельная адсорбция,		
		4.2	определение удельной поверхности сорбентов.	ЛК, ЛР	
			Теплоты адсорбции. Особенности адсорбции		
			молекул и ионов из растворов на твердой поверхности. Изотерма адсорбции с константой		
			обмена. Лиотропный ряд. Иониты.		
		4.3	Пористые материалы. Энтеросорбенты.	ЛК, ЛР	
		1.5	История, основные задачи и направления	7110, 711	
			развития коллоидной химии. Классификации		
		5.1	дисперсных (коллоидных) систем, их значение.	ЛК, ЛР	
			Роль стабилизатора.		
			Условия и методы получения дисперсий.		
		5.2	Пептизация. Строение мицеллы гидрофобного	ЛК, ЛР	
			золя.		
			Общность молекулярно-кинетических свойств		
			растворов и дисперсных систем. Диффузия и		
			броуновское движение. Уравнения Фика,		
	Коллоидная химия.		Эйнштейна и Эйнштейна-Смолуховского. Осмос		
Раздел 5	Классификации, методы	<i>5</i> 2	и мембранные процессы очистки коллоидных	пи пр	
	получения, и свойства	5.3	систем (диализ, ультрафильтрация).	ЛК, ЛР	
	дисперсных систем.		Кинетическая устойчивость свободнодисперсных систем. Седиментация.		
			Анализ дисперсных систем. Седиментация.		
			данным седиментации и центрифугирования.		
			Взвеси. Гипсометрический закон		
			Оптические свойства. Рассеяние и поглощение		
			света в коллоидных системах. Закон Рэлея.		
		E 1	Применение закона Ламберта-Беера к мутным	пи пр	
		5.4	средам. Оптические методы исследования	ЛК, ЛР	
			дисперсий (нефелометрия, турбидиметрия		
	!		ультрамикроскопия, электронная микроскопия).		

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
		6.1	Возникновение двойного электрического слоя (ДЭС) на границе фаз. Уравнение Липпмана. Строение ДЭС и его потенциалы ДЭС (термодинамический, адсорбционный и электрокинетический) и влияние на них различных факторов. Изоэлектрическое состояние.	ЛК, ЛР
Раздел 6	Электрические явления в дисперсиях. Агрегативная устойчивость. Коагуляция.	6.2	Электрокинетические явления электрофорез, электроосмос, потенциалы седиментации и течения) и их практическое значение. Электрофорез. Уравнения Гельмгольца-Смолуховского.	ЛК, ЛР
		6.3	Факторы кинетической и агрегативной устойчивости дисперсных систем. Коагуляция, порог коагуляции электролитами (правило значности). Теория устойчивости гидрофобных коллоидов Дерягина-Ландау-Фервея-Овербека /ДЛФО/. Потенциальные кривые. Тиксотропия.	ЛК, ЛР
		6.4	Гели гидрофобных золей. Кинетика коагуляции. Особые случаи коагуляции золей электролитами. Структурно- механический фактор стабилизации дисперсий. Коллоидная защита. Защитные вещества, защитные числа.	ЛК, ЛР
		7.1	Общая характеристика высокомолекулярных соединений (ВМС). Классификации ВМС. Природные и синтетические ВМС. Конформация макромолекул.	ЛК, ЛР
Раздел 7	Лиофильные коллоиды. Растворы высокомолекулярн ых соединений (ВМС) и их свойства.	7.2	Набухание ВМС. Термодинамика и кинетика набухания. Растворы ВМС как термодинамически равновесные коллоидные системы. Сравнение свойств растворов ВМС и гидрофобных золей. Осмотическое давление, вязкость и оптические свойства растворов ВМС.	ЛК, ЛР
		7.3	Растворы полиэлектролитов. Полиамфолиты. Изоэлектрическая точка белков и методы её определения. Мембранное равновесие Гиббса-Доннана. Нарушение устойчивости растворов ВМС (гелеобразование, коацервация, высаливание, денатурация).	ЛК, ЛР
		7.4	Гели растворов ВМС. Свойства гелей ВМС и гелей гидрофобных золей. Синерезис гелей. Гели.	ЛК, ЛР

^{* -} заполняется только по $\underline{\mathbf{O}\mathbf{\Psi}\mathbf{H}\mathbf{O}\mathbf{M}}$ форме обучения: $\mathit{Л}K$ – лекции; $\mathit{Л}P$ – лабораторные работы; $\mathit{C}3$ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная	

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
	комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	Лаборатории практикума по физической и коллоидной химии оснащены стандартным оборудованием: дистиллятор, аналитические весы, магнитные мешалки, иономеры, рН- метры, термостат жидкостной, поляриметр (сахариметр), измерители электропроводности (кондуктометры), измерители ЭДС, фотометры, газометры, хроматограф, нефелометры, вискозиметры. Всё оборудование в лаборатории достаточно современно.
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Гамеева О. С. Физическая и коллоидная химия / учебное пособие. 2020. Издательство: Лань. 328 стр. ISBN: 978-5-8114-4869-2. ББК: 24.1. УДК: 544 https://e.lanbook.com/book/126711?category=3864
- 2. Маркова Е.Б., Чередниченко А.Г., Лядов А.С.. Учебное пособие по физической и коллоидной химии. М.Изд-во РУДН.2019, 159 с.
- 3. Гамеева О. С. Сборник задач и упражнений по физической и коллоидной химии учебное пособие. 2018. Издательство: Лань. 192 стр. ISBN: 978-5-8114-2453-5 ББК: 24.5 https://e.lanbook.com/book/146617?category=3864

Дополнительная литература:

- 1. Мушкамбаров Николай Николаевич. Физическая и коллоидная химия [Текст]: Учебник для вузов / Н.Н. Мушкамбаров; Науч. ред. В.Н.Тимербаев. М.: Гэотар-Мед, 2001. 384 с.: ил. (21 век). ISBN 5-9231-0089-4 : 162.00.
- 2. Физическая и коллоидная химия [Текст/электронный ресурс]: Сборник задач / А.И. Пылинина, Е.И. Поварова, А.Г. Чередниченко. Электронные текстовые данные. М.: Изд-во РУДН, 2018. 48 с. ISBN 978-5-209-09046-5 : 64.84. http://lib.rudn.ru/MegaPro2/UserEntry?Action=Rudn_FindDoc&id=470862&idb=0

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Физическая и коллоидная химия».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС</u>!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Физическая и коллоидная химия» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

Доцент, кафедра физической и коллоидной химии Маркова Екатерина Борисовна Должность, БУП Подпись Фамилия И.О. РУКОВОДИТЕЛЬ БУП: Заведующий кафедрой Генрихович Должность БУП Подпись Фамилия И.О.

Подпись

РАЗРАБОТЧИК:

Доцент

Должность, БУП

Кротова Елена

Александровна

Фамилия И.О.