Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования Должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 29.02.2024 12:22:44

Уникальный программный ключ:

Аграрно-технологический институт

са<u>953а0120d891083f939673078ef1a989dae18а Гарио-Телиология десемия (ОУП)-разработчика ОП ВО)</u>

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ГЕНОМИКА И ТРАНСКРИПТОМИКА

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

06.05.01 БИОИНЖЕНЕРИЯ И БИОИНФОРМАТИКА

(код и наименование направления подготовки/специальности)

ЛИСШИПЛИНЫ ведется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

БИОИНЖЕНЕРИЯ И БИОИНФОРМАТИКА

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Геномика и транскриптомика» входит в программу специалитета «Биоинженерия и биоинформатика» по направлению 06.05.01 «Биоинженерия и биоинформатика» и изучается в 5 семестре 3 курса. Дисциплину реализует Агробиотехнологический департамент. Дисциплина состоит из 7 разделов и 22 тем и направлена на изучение изучение современной комплексной фундаментальной дисциплины об организации, структуре и функционировании геномов и транскриптомов.

Целью освоения дисциплины является получение базовых знаний об организации, структуре и функционировании геномов; путей формирования и эволюции транскриптомов, ознакомление с универсальными принципами построения и функционирования геномов и транскриптомов.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Геномика и транскриптомика» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-3	Способен проводить экспериментальную работу с организмами и клетками, использовать физикохимические методы исследования макромолекул, математические методы обработки результатов биологических исследований;	ОПК-3.2 Владеет методиками исследования макромолекул и экспериментальной работы с макромолекулами;
ОПК-4	Способен применять методы биоинженерии и биоинформатики для получения новых знаний и для получения биологических объектов с целенаправленно измененными свойствами, проводить анализ результатов и методического опыта исследования, определять практическую значимость исследования;	ОПК-4.2 Умеет определять и описывать свойства биологических объектов, полученных экспериментальным путем, для их дальнейшего анализа;
ПК-2	Способен к научно- исследовательской деятельности и анализу современного состояния и перспектив использования различных методов молекулярно-генетического анализа полиморфизма генов в прикладных целях	ПК-2.2 Способен использовать имеющиеся знания молекулярно-генетического анализа в научно-исследовательской деятельности; ПК-2.3 Способен выбирать среди методов молекулярно-генетического анализа наиболее перспективные и использоватих для решения прикладных задач;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Геномика и транскриптомика» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Геномика и транскриптомика».

Tаблица 3.1. Перечень компонентов $O\Pi$ BO, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-3	Способен проводить экспериментальную работу с организмами и клетками, использовать физико-химические методы исследования макромолекул, математические методы обработки результатов биологических исследований;	Молекулярная биология; Биофизика; Программирование;	Научно-исследовательская; Физико-химические методы в биологии**; Физические методы исследования макромолекул**; Биохимия; Протеомика и метаболомика; Программирование; Компьютерное моделирование и молекулярный дизайн био- и наноструктур**; Программы, используемые в биоинформатике**;
ОПК-4	Способен применять методы биоинженерии и биоинформатики для получения новых знаний и для получения биологических объектов с целенаправленно измененными свойствами, проводить анализ результатов и методического опыта исследования, определять практическую значимость исследования;	Сельскохозяйственная биотехнология; Молекулярная биология;	Иммунитет растений; Протеомика и метаболомика; Алгоритмы в биоинформатике**; Язык R и его применение в биоинформатике**; Язык программирования SQL**; Компьютерное моделирование и молекулярный дизайн био- и наноструктур**; Программы, используемые в биоинформатике**;
ПК-2	Способен к научно- исследовательской деятельности и анализу современного состояния и перспектив использования различных методов молекулярно- генетического анализа полиморфизма генов в прикладных целях	Молекулярная биология;	Технологическая (проектнотехнологическая) практика; Генетика; Практикум по генной инженерии; Метагеномика; Методы редактирования генома; Протеомика и метаболомика; Генная инженерия; Практическая биоинформатика; Алгоритмы в биоинформатике**; Язык R и его применение в биоинформатике**;

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
			Язык программирования SQL**;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Геномика и транскриптомика» составляет «5» зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur ywasuoù nasoar y	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			5	
Контактная работа, ак.ч.	85		85	
Лекции (ЛК)	34		34	
Лабораторные работы (ЛР)	51		51	
актические/семинарские занятия (СЗ)		0		
Самостоятельная работа обучающихся, ак.ч.	77		77	
Контроль (экзамен/зачет с оценкой), ак.ч.	18		18	
Общая трудоемкость дисциплины	ак.ч.	180	180	
	зач.ед.	5	5	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
	Введение в технологии геномики	1.1	Краткая история геномики	ЛК, ЛР
Раздел 1		1.2	Обзор технологий секвенирования	ЛК, ЛР
		1.3	Применение геномики в научных исследованиях	ЛК, ЛР
Раздел 2	Секвенирование и сборка	2.1	Подготовка образцов и методология для секвенирования генома	ЛК, ЛР
Раздел 2	генома	2.2	Подходы к сборке генома	ЛК, ЛР
		2.3	Оценка качества сборки генома	ЛК, ЛР
Раздел 3		3.1	Структурная аннотация геномов	ЛК, ЛР
	Аннотирование генома и сравнительная геномика	3.2	Функциональная аннотация и предсказание генов	ЛК, ЛР
		3.3	Выявление ортологий и сравнительная геномика	ЛК, ЛР
		3.4	Эволюция и филогенетические связи	ЛК, ЛР
	Анализ вариаций и функциональная геномика	4.1	Обнаружение генетических вариаций	ЛК, ЛР
D 4		4.2	Анализ сцепления и GWAS	ЛК, ЛР
Раздел 4		4.3	Методы функциональной геномики	ЛК, ЛР
		4.4	Связь генотипа с фенотипом	ЛК, ЛР
	Введение в транскриптомику	5.1	Основы экспрессии и регуляции генов	ЛК, ЛР
Раздел 5		5.2	Обзор методов транскриптомики	ЛК, ЛР
Раздел 3		5.3	Экспериментальный дизайн для транскриптомики	ЛК, ЛР
	Секвенирование и анализ РНК	6.1	Подготовка образцов и методика для РНК-секвенирования	ЛК, ЛР
Раздел 6		6.2	Количественная оценка и дифференциальная экспрессия	ЛК, ЛР
		6.3	Функциональный анализ транскриптомных данных	ЛК, ЛР
Раздел 7	Применение геномики и	7.1	Примеры в исследованиях растений	ЛК, ЛР
газдел /	транскриптомики	7.2	Примеры в исследованиях животных	ЛК, ЛР

^{*} - заполняется только по ${\bf \underline{OYHOЙ}}$ форме обучения: ${\it ЛK}$ – ${\it лекции}$; ${\it ЛP}$ – ${\it лабораторные работы}$; ${\it C3}$ – ${\it семинарские занятия}$.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	Лаборатория для проведения практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Комплект специализированной

		мебели; технические средства: Термоциклер для амплификации нуклеиновых кислот Т100 (Т100 Thermal Cycler); ДНК-амплификатор «Терцик» с цифровым дисплеем; Трансиллюминатор ЕСХ-15С; Центрифуга Еррепdolf 5418 с ротором F-45-18-11 в комплекте; Камеры Helicon для электрофореза; Источник питания ДНК Технологии; Весы Ohaus Scout Pro; Магнитная мешалка с подогревом MR 3001 (Heidolph); Холодильник Бирюса-6; Набор дозаторов — 15 шт. Программное обеспечение: продукты Місгоsoft (ОС, пакет офисных приложений, в т.ч. MS Office/Office 365,
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	Театя). Лаборатория для проведения практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Комплект специализированной мебели; технические средства: Термоциклер для амплификации нуклеиновых кислот Т100 (Т100 Thermal Cycler); ДНК-амплификатор «Терцик» с цифровым дисплеем; Трансиллюминатор ЕСХ-15С; Центрифуга Еррепdolf 5418 с ротором F-45-18-11 в комплекте; Камеры Helicon для электрофореза; Источник питания ДНК

		Технологии; Весы Ohaus Scout Pro; Магнитная мешалка с подогревом MR 3001 (Heidolph); Холодильник Бирюса-6; Набор дозаторов — 15 шт. Программное обеспечение: продукты Microsoft (OC, пакет офисных приложений, в т.ч. MS Office/Office 365, Teams). Компьютерный класс для
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	проведения занятий лекционного типа, практических занятий, текущего контроля и промежуточной аттестации. Комплект специализированной мебели; технические средства (16 рабочих мест): Интерактивный комплекс - интерактивная доска Triumph Board с проектором Optoma. Виртуальный лабораторный практикум «Физикон». Программное обеспечение: продукты Microsoft (ОС, пакет офисных приложений, в т.ч. MS Office/Office 365, Teams).¶

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Нельсон, Д. Основы биохимии Ленинджера : учебное пособие : в 3 томах / Д. Нельсон, М. Кокс ; перевод с английского под редакцией Н. Б. Гусева. 5-е изд. (эл.). Москва : Лаборатория знаний, 2022 Том 1 : Основы биохимии, строение и катализ 2022. 746 с. ISBN 978-5-93208-607-0. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/319169
- 2. Нельсон, Д. Основы биохимии Ленинджера : учебное пособие : в 3 томах / Д. Нельсон, М. Кокс ; перевод с английского под редакцией Н. Б. Гусева. 5-е изд. (эл.). Москва : Лаборатория знаний, 2022 Том 2 : Биоэнергетика и метаболизм 2022. 689 с. ISBN 978-5-93208-608-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/319172
- 3. Нельсон, Д. Основы биохимии Ленинджера: учебное пособие: в 3 томах / Д. Нельсон, М. Кокс; перевод с английского под редакцией Н. Б. Гусева. 5-е изд. (эл.). Москва: Лаборатория знаний, 2022 Том 3: Пути передачи информации 2022. 441

- с. ISBN 978-5-93208-609-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/319175
- 4. Кребс, Д. Г. Гены по Льюину: учебное пособие / Д. Г. Кребс, С. Килпатрик; перевод с английского под редакцией Д. В. Ребрикова, Н. Ю. Усман; художник В. Е. Шкерин. 4-е изд. Москва: Лаборатория знаний, 2021. 922 с. ISBN 978-5-93208-506-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/172253

 Дополнительная литература:
- 1. Клетки по Льюину: учебное пособие / под редакцией Л. Кассимерис [и др.]. 5-е изд. (эл.). Москва: Лаборатория знаний, 2022. 1059 с. ISBN 978-5-00101-961-9. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/249926
- 2. Генетические основы селекции растений: монография: в 4 томах. Минск: Белорусская наука, [б. г.]. Том 4: Биотехнология в селекции растений. Геномика и генетическая инженерия 2014. 653 с. ISBN 978-985-08-1791-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/90618
- 3. Молекулярно-генетические и биохимические методы в современной биологии растений / Под ред. Вл.В.Кузнецова и др. М. : Бином. Лаборатория знаний, 2011, 2012. 487 с. (Методы в биологии).

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Геномика и транскриптомика».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС!</u>

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Геномика и транскриптомика» представлены в Приложении к настоящей Рабочей программе дисциплины.