Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребф едеральное чтосударственное автономное образовательное учреждение высшего образования должность: Ректор «Российский университет дружбы народов имени Патриса Лумумбы» Дата подписания: 27.05.2024 15:52:32

Уникальный программный ключ:

ca953a0120d891083f939673078

Инженерная академия

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФИЗИЧЕСКИЕ ОСНОВЫ МИКРО- И НАНОЭЛЕКТРОНИКИ

(наименование дисциплины/модуля)

Рекомендована МССН для направления подготовки/специальности:

28.03.02 НАНОИНЖЕНЕРИЯ

(код и наименование направления подготовки/специальности)

ЛИСШИПЛИНЫ велется рамках реализации профессиональной образовательной программы высшего образования (ОП BO):

НАНОТЕХНОЛОГИИ И НАНОМАТЕРИАЛЫ В ПРИБОРОСТРОЕНИИ

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Физические основы микро- и наноэлектроники» входит в программу бакалавриата «Нанотехнологии и наноматериалы в приборостроении» по направлению 28.03.02 «Наноинженерия» и изучается в 3 семестре 2 курса. Дисциплину реализует Базовая кафедра «Нанотехнологии и микросистемная техника». Дисциплина состоит из 6 разделов и 21 тема и направлена на изучение формирование компетенций в осознанном и целенаправленном использования навыков и умений при создании элементной базы устройств микро- и наноэлектроники

Целью освоения дисциплины является изучение основ строения материалов и физики происходящих в них явлений, технологии материалов электронной и микроэлектронной техники, материалов наноэлектроники; изучение физических процессов и законов, лежащих в основе принципов действия приборов микро- и наноэлектроники, и определяющих характеристики и параметры этих приборов

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Физические основы микро- и наноэлектроники» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-3	Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные	ОПК-3.1 Знает основные методы измерений в области наноинженерии; ОПК-3.2 Умеет проводить выбор метода измерения и наблюдения нанообъектов; ОПК-3.3 Владеет методами обработки и представления экспериментальных данных;
ОПК-5	Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии	ОПК-5.1 Знает эффективные и безопасные технические средства и технологии в области наноинженерии; ОПК-5.2 Умеет принимать обоснованные технические решения в профессиональной деятельности;
ПК-6	Способен определять этапы изготовления электромеханической системы, формировать перечни оборудования и последовательность необходимых для ее изготовления технологических модулей и операций	ПК-6.1 Знает основные этапы изготовления электромеханической системы; ПК-6.2 Владеет навыками формирования перечня оборудования и последовательности технологических модулей и операций для изготовления электромеханической системы;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Физические основы микро- и наноэлектроники» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению

запланированных результатов освоения дисциплины «Физические основы микро- и наноэлектроники».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-3	Способен проводить измерения и наблюдения, обрабатывать и представлять экспериментальные данные	Физика;	Методы диагностики в нанотехнологиях; Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Технологическая практика; Преддипломная практика; Технологическая практика (учебная);
ОПК-5	Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии	Основы военной подготовки. Безопасность жизнедеятельности; Введение в нанотехнологиии и микросистемную технику; Химия;	Основы проектирования лазеров; Сопротивление материалов; Научно-исследовательская работа (получение первичных навыков научно-исследовательской работы); Технологическая практика; Преддипломная практика; Технологическая практика (учебная);
ПК-6	Способен определять этапы изготовления электромеханической системы, формировать перечни оборудования и последовательность необходимых для ее изготовления технологических модулей и операций	Химия;	Преддипломная практика; Технологическая практика (учебная); Научно-исследовательская работа (получение первичных навыков научно- исследовательской работы); Технологическая практика; Системы автоматизированного проектирования наноструктур и систем на их основе**; Системы автоматизированного проектирования гетероструктурных лазеров**;

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО

^{** -} элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Физические основы микро- и наноэлектроники» составляет «4» зачетные единицы.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Dur vinofinoŭ poforti	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			3	
Контактная работа, ак.ч.	36		36	
Лекции (ЛК)			18	
Лабораторные работы (ЛР)	18		18	
Практические/семинарские занятия (СЗ)	0		0	
Самостоятельная работа обучающихся, ак.ч.	обучающихся, ак.ч. 90		90	
Контроль (экзамен/зачет с оценкой), ак.ч.	18		18	
Общая трудоемкость дисциплины	ак.ч.	144	144	
	зач.ед.	4	4	

Общая трудоемкость дисциплины «Физические основы микро- и наноэлектроники» составляет «4» зачетные единицы.

Таблица 4.2. Виды учебной работы по периодам освоения образовательной программы высшего образования для заочной формы обучения.

Dura vivolino y molinova	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			4	
Контактная работа, ак.ч.	8		8	
Лекции (ЛК)	4		4	
Лабораторные работы (ЛР) 4		4		
Практические/семинарские занятия (СЗ)	0		0	
Самостоятельная работа обучающихся, ак.ч.	этельная работа обучающихся, ак.ч.		127	
Контроль (экзамен/зачет с оценкой), ак.ч.	9		9	
Общая трудоемкость дисциплины	ак.ч.	144	144	
	зач.ед.	4	4	

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
Раздел 1	Общая характеристика	1.1	Роль физических явлений и процессов в электронике	ЛК, ЛР
	электроники	1.2	Терминология	ЛК, ЛР
		1.3	Основные направления развития электроники	ЛК, ЛР
		2.1	Элементы зонной теории твердых тел	ЛК, ЛР
		2.2	Статистика электронов и дырок в полупроводниках	ЛК, ЛР
Раздел 2	Основы физики твердого	2.3	Электропроводность электронных тел	ЛК, ЛР
	тела и полупроводников	2.4	Генерация и рекомбинация носителей заряда	ЛК, ЛР
		2.5	Диффузия и дрейф носителей заряда в полупроводниках	ЛК, ЛР
		3.1	Р-п переход	ЛК, ЛР
	Контактные и	3.2	Контакт металл-полупроводник	ЛК, ЛР
Раздел 3	поверхностные явления в	3.3	Гетеропереходы	ЛК, ЛР
	полупроводниках	3.4	Биполярные полупроводниковые транзисторы	ЛК, ЛР
		3.5	Полевые транзисторы	ЛК, ЛР
	Гальваномагнитные,	4.1	Эффект Холла	ЛК, ЛР
	термомагнитные и	4.2	Магнитнорезистивный эффект	ЛК, ЛР
Раздел 4	термоэлектрические явления в полупроводниках	4.3	Термомагнитные явления	ЛК, ЛР
Раздел 5		5.1	Поглощение света в полупроводниках	ЛК, ЛР
	Оптические свойства	5.2	Приемники оптического излучения	ЛК, ЛР
	полупроводников	5.3	Светоизлучающие полупроводниковые приборы	ЛК, ЛР
Раздел 6	Перспективы развития	6.1	Современные достижения электроники	ЛК, ЛР
	микро и наноэлектроники	6.2	Физические основы перспективных направлений микро- и наноэлектроники	ЛК, ЛР

^{*} - заполняется только по <u>**ОЧНОЙ**</u> форме обучения: ЛК – лекции; ЛР – лабораторные работы; СЗ – практические/семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Лаборатория	Аудитория для проведения лабораторных работ, индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и оборудованием.	

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Физические основы электроники : учебное пособие / Ю. А. Смирнов, /С. В. Соколов, Е. В. Титов. 2-е изд., испр. Санкт-Петербург : Лань, 2022. 560 с. ISBN 978-5-8114-1369-0.
 - https://e.lanbook.com/book/211208
- 2. Шишкин, Г. Г. Наноэлектроника. Элементы, приборы, устройства : учебное пособие / Г. Г. Шишкин, И. М. Агеев. 4-е изд. Москва : Лаборатория знаний, 2020. 411 с. ISBN 978-5-00101-731-8
- 3. Дьячков, П. Н. Электронные свойства и применение нанотрубок : монография /П. Н. Дьячков. 4-е изд. Москва : Лаборатория знаний, 2020. 491 с. (Нанотехнологии). ISBN 978-5-00101-842-1 Дополнительная литература:
- 1. Славникова, М. М. Физические основы микро- и наноэлектроники: Учебное пособие \ Томск: ТУСУР, 2014. 232 с

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Физические основы микро- и наноэлектроники».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины в ТУИС!

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Физические основы микро- и наноэлектроники» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

	Багаев Тимур		
Доцент	Анатольевич		
Должность, БУП	Фамилия И.О.		
РУКОВОДИТЕЛЬ БУП:			
Заведующий кафедрой	Попов Сергей Викторович		
Должность БУП	Фамилия И.О.		
РУКОВОДИТЕЛЬ ОП ВО:			
	Макеев Мстислав		
Доцент	Олегович		
Должность, БУП	Фамилия И.О.		

РАЗРАБОТЧИК: