Документ подписан простой электронной подписью Информация о владельце: ФИО: Ястребов Олег Алектенировии State Auton Должность: Ректор Дата подписания: 27.05.2025 15:15:49 EOPLES' Уникальный программный ключ: са953a0120d891083f939673078ef1a989dae18a Киронация саявляется и подписания: 27.05.2025 15:15:49 EOPLES' RUDN University

Faculty of Physics, Mathematics and Natural Sciences

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

«Introduction to Neural Networks, Big Data Analysis and Machine Learning» course title

Recommended by the Didactic Council for the Education Field of:

01.04.01 Mathematics

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

«Functional methods in differential equations and interdisciplinary research»

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The purpose of mastering the discipline is to form an understanding of modern mathematical packages that allow solving applied problems in mathematics and physics. In practical classes, in the process of solving the assigned problems from the field of mathematical physics, optimization and random processes, to instill skills in using the mathematical packages corresponding to the problems. The implementation of this goal includes a consistent acquaintance and mastering of mathematical software and practicing problem solving techniques in practical and laboratory classes; midterm and final control reveal the degree of assimilation of the acquired skills. As a result, the course should demonstrate the connection between linear algebra, programming and solving current problems of data analysis.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "Non-Euclidean geometries and their applications" is aimed at developing the following competencies (parts of competencies):

Table 2.1. List of competence	es that students acquire	e through the course stu	ıdv
······································	· · · · · · · · · · · · · · · · · · ·		

Code	Competence	Competence achievement indicators (within this discipline)		
	Able to conduct scientific research and obtain new	PC-1.1. Draws up a general research plan and detailed plans for individual stages		
PC-1	scientific and applied results independently and as part of	PC-1.2. Selects experimental and computational- theoretical methods for solving the problem based on		
	a scientific team	the available material and time resources		

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The discipline refers to the part formed by the participants in the educational relations of block B1 of the EP HE. As part of the EP HE, students also master other disciplines and / or practices that contribute to the achievement of the planned results of mastering the discipline.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Code	Competence	Previous disciplines/modules, practices	Subsequent disciplines/modules, practices*
PC-1	Able to conduct scientific research and obtain new scientific and applied results independently and as part of a scientific team	-	Research work, Undergraduate practice, State examination

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total labor intensity of the discipline is 3 credits.

*Table 4.1. Types of academic activities during the periods of higher education programme mastering (full-time training)**

Type of study work		TOTAL,	TOTAL, Semester			
		a .h.	1	2	3	4
Contact work, academic hours		72	72			
Lectures (LC)		36	36			
Lab work (LW)						
Seminars (workshops/tutorials) (S)		36	36			
Self-studies		36	36			
Evaluation and assessment (exam/passing/failing						
grade)						
Course workload	a.h.	108	108			
	credits	3	3			

5. COURSE CONTENTS

N⁰	Course Module	Brief Description of the Module Content	Type of
	Title		study
1			work
1	Introduction. Basics	The main types of mathematical packages used in	Lecture, seminar
	of programming in	modern applied mathematics and physics, the pros and	Seminar
	Python. Data types	cons of the Matlab package and the Python language.	
	and working with	Simple data types, complex data types, operations and	
	them, working with	functions for working with them, reading and writing	
	the file system.	from files. Working with strings, lists, solving	
•	· · · · · · · · · · · · · · · · · · ·	problems in <u>https://py.checkio.org/</u>	T
2	Working with strings	Solving the Sudoku problem. Caesar, Vigenere, RSA	Lecture,
	and lists in python	encryption algorithms. Writing a messenger, the Flask	seminar
-		library. Writing and running tests	-
3	Basics of working	Studying the interface, editing and running scripts,	Lecture,
	with Jupyter	plotting graphs. Working with numpy, pandas,	seminar
	Notebook.	matplotlib libraries, plotting graphs.	
	Mathematical		
	expressions and		
	functions, linear		
	algebra.		
4	Analysis of	Solution of systems of linear equations. Least squares	Lecture,
	functional	method. Principal component method. Interpolation of	seminar
	dependencies and	functions by polynomials.	
	data processing.		
5	Singular Value	Multivariate Gaussian Distribution. Covariance and	Lecture,
	Decomposition of	Correlation Matrix. Singular Value Decomposition of	seminar
	Matrices, Principal	Matrices. Principal Component Analysis. Data	
	Component Analysis	Visualization.	Lecture,
6	Working with	Introduction to the concept of classical machine	
	tabular data in	learning. Tabular data. The pandas library, methods	seminar

	pandas	head, tail, info, describe, loc, iloc, apply, groupby,	
		unique, nunique, drop, dropna	
7	Classical machine	Classification and regression problem. Linear	Lecture,
	learning	regression. Loss function. Regularization. Lasso and	seminar
		Ridge regression. Working with the scikit-learn	
		library. Cross-validation, retraining, estimation of	
		algorithm hyper-parameters.	
8	Basics of	Linear discriminant analysis. Decision rule, separating	Lecture,
	Classification and	hyperplane. Linear and quadratic programming.	seminar
	Regression	Support vector machine. Explicit and implicit	
		coordinate transformation. Kernel trick.	
9	Optimization	Gradient descent, Newton's method. Logistic	Lecture,
	methods in machine	regression. Gradient and Hessian calculation. Linear	seminar
	learning	step search.	
10	Non-metric	Logical classification methods, decision trees,	
	classification	information gain criterion	seminar
	methods		
11	Ensemble	Ensemble Algorithms. Random Forest and Gradient	Lecture,
	Algorithms	Boosting over Decision Trees. CATBoost Algorithm.	seminar
12	Pytorch Basics	Pytorch and Neural Networks	Lecture,
			seminar

. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Classroom type	Classroom equipment	Specialized educational/laboratory equipment, software and materials for mastering the discipline
Lecture	An auditorium for lecture-type classes, equipped with a set of specialized furniture; board (screen) and technical means of multimedia presentations.	-
Seminar	An auditorium for conducting seminar-type classes, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and technical means for multimedia presentations.	-
For independent work of students	An auditorium for conducting seminar-type classes, group and individual consultations, current control and intermediate certification, equipped with a set of specialized furniture and technical means for multimedia presentations.	-

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main literature:

- 1. Swaroop C.H. A Byte of Python. 2013.
- 2. *Muhammad Yasoob Ullah Khalid*. Intermediate Python [electronic resource]. URL: https://github.com/lancelote/interpy-ru
- 3. Gayle Laakmann McDowell. Cracking the Coding Interview.

Additional literature:

- 1. Robert Sedgewick, Kevin Wayne, Robert Dondero. Introduction to Programming in Python: An Interdisciplinary Approach
- 2. Wes McKinney. Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter.
- 3. Chollet F. Deep Learning with Python.

Resources of the information and telecommunications network "Internet":

Software – Python, Jupyter Notebook, numpy, pandas, cvxopt, sklearn.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

Evaluation materials and a point-rating system* for evaluating the level of formation of competencies (parts of competencies) based on the results of mastering the discipline "Non-Euclidean geometries and their applications" are presented in the Appendix to this Work Program of the discipline

Developer:

I.M. Karandashev

signature

name and surname

HEAD OF HIGHER EDUCATION PROGRAMME:

A.V. Faminskiy

signature

name and surname

HEAD OF EDUCATIONAL DEPARTMENT **A.B. Muravnik**

signature

name and surname