Faculty of Science, S.M. Nikol'skii Mathematical Institute

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Generic functions

course title

Recommended by the Didactic Council for the Education Field of:

01.03.01 Mathematics

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Mathematics

higher education programme profile/specialisation title

1. COURSE GOAL(s) <u>Possible wording</u>

The course "Generic functions" aims to educate students in Generic functions and its applications to a wide range of different areas of modern analysis, topology and partial differential equations. This course deepens the mathematical culture of students and helps them master the fundamental mathematical concepts that form the basis of modern functional analysis, operator theory, harmonic analysis and related areas of real analysis. In acquainting students with the theoretical background, methods and concepts of Generic functions the course provides an introduction to the advanced study of more specialized topics in functional analysis, real analysis and partial differential equations.

2. REQUIREMENTS FOR LEARNING OUTCOMES *Possible wording*

Mastering the discipline "Generic functions" expects students to acquire the following competencies:

Competence code	Competence descriptor	Competence formation indicators (within this course)
GPC-1	Ability to apply the fundamental knowledge gained in the field of mathematical and (or) natural sciences and use it in professional activities	GPC-1.1. Uses existing and develops new methods of solving problems in mathematics
PC-1	Ability to determine Generic forms and rules of a separate subject area	 PC-1.1. Plans individual stages of research in the presence of a Generic research plan PC-1.2. Prepares elements of documentation, draft plans and programs for individual stages of research PC-1.3. Selects research methods to solve the assigned research tasks

Table 2.1. List of competences that students acquire through the course study

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the core/variable/elective* component of (B1) block of the higher educational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Compet ence code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
GPC-1	Ability to apply the fundamental knowledge gained in the field of mathematical and (or) natural sciences and use it in professional activities	Mathematical analysis, Linear algebra and analytic geometry, Partial differential equations, Functional analysis, Complex analysis, Optimization and convex analysis	State examination, Research seminar, Research work, Function spaces (elective)
PC-1	Ability to determine Generic forms and rules of a separate subject area	Mathematical analysis, Linear algebra and analytic geometry, Functional analysis, Complex analysis	State examination, Research seminar

* To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES <u>Possible wording</u>

1) The total workload of the course amounts to 4 credits.

Table 4.1. Types of academic activities during the periods of higher education programme mastering (*full-time training*)*

Type of academic activities		Total	Semesters/training modules			
		academic hours	5	6	7	8
Contact academic hours		68			68	
including:						
Lectures (LC)	Lectures (LC)				34	
Lab work (LW)	Lab work (LW)					
Seminars (workshops/tutorials)	(S)	34			34	
Self-studies		49			49	
Evaluation and assessment (exam/passing/failing grade)		27			27	
Course workload	academic hours_	144			144	
	credits	4			4	

5. COURSE CONTENTS

Table 5.1.	Course	contents	and	academic	activities	types

Course module title	Course module contents (topics)	Academic activities types
Chapter 1: Foundations of	Topic 1.1. Linear topological spaces and their	
topological vector spaces	basic properties. Balanced, convex and absorbing	LC, S
and construction of the	sets in linear topological spaces. Locally convex	

Course module title	Course module contents (topics)	Academic activities types	
spaces of test functions	spaces and their equivalent description in terms of		
and associated distribution	a polynormed topology. Examples: topology of		
spaces	the pointwise convergence, strong operator		
	topology, weak topology, weak *-topology, weak		
	operator topology.		
	Topic 1.2. Metrization of the polynormed space		
	with a countable family of pseudonorms. Frechet		
	spaces. Pseudonormability of the polynormed		
	space with a finite family of seminorms. The		
	support of a function. Notion of a continuous		
	embedding between linear topological spaces.		
	Continuous embeddings between (pseudo)normed		
	spaces. Spaces of test functions: definition,		
	embeddings and examples. Classical bump	LC, S	
	functions and their modifications. Examples of the		
	distributions obtained from the concepts of		
	"valeur principal" and "partie finie". Spaces of		
	test functions as multiplicative algebras.		
	Metrization properties for the spaces of test		
	functions. Density of the space of compactly		
	supported smooth functions in the Schwartz space		
	and in the space of all smooth functions.		
	Topic 1.3. The dual spaces of distributions:		
	distributions with a compact support, Schwartz		
	(tempered) distributions and Generic distributions.		
	Topology and characterization of convergence in		
	classical distribution spaces. Embeddings between		
	classical distribution spaces. Locally integrable	LC, S	
	functions: examples and basic properties. Regular		
	distributions generated by locally integrable		
	functions. Examples of singular distributions:		
	delta-function, Generic Radon measures. Support		
	of a distribution.		
	Topic 2.1. Differentiation of a distribution:		
	definition and relation with the notions of a		
	Genericized Sobolev and classical derivatives.		
	Examples: derivatives of the Heavyside function	LC, S	
	and other classical regular and singular	20, 5	
	distributions. Algebraic rules of the distributional		
Chapter 2: Main	differentiation. Finite order distributions:		
operations and	examples and basic properties.		
constructions on	Topic 2.2. Multiplication of a distribution by a		
distribution spaces	smooth function: definition and basic properties.		
	The relationship between the multiplication	LC, S	
	operator and differentiation. The Genericized	10,5	
	Leibniz formula for the product of a smooth		
	function and a distribution.		
	Topic 2.3. Convolution of a pair of functions:	LC, S	
	definition, commutativity, associativity,	20,5	

Course module title	Course module contents (topics)	Academic activities types	
	distributivity and other basic properties. Genericized Hoelder's inequality and Young's convolutional inequality. The relationship between convolution and differentiation. Convolution of a function and a distribution. Delta-function as a neutral element with respect to convolution. The relationship between convolution and distributional differentiation. Topic 3.1. The Fourier transform in the Schwartz space of rapidly decreasing functions: definition,		
Chapter 3: The Fourier transform in distribution	differentiation properties, continuity. The inverse Fourier transform in the Schwartz space of rapidly decreasing functions and the Fourier inversion theorem for the Schwartz space of test functions. The Fourier transform as a homeomorphism of the Schwartz space of rapidly decreasing functions onto itself. Plancherel- Schwartz theorem on the extension of the Fourier transform. The Fourier transform of a convolution of two functions. The Fourier transform of a pointwise product of two functions.	LC, S	
spaces	Topic 3.2. The Fourier transform and the inverse Fourier transform as homeomorphisms of a dual Schwartz space of tempered distributions. The Fourier transforms of a distributional derivative. The Fourier transform of a convolution of a function and a distribution. The Fourier transform of a distribution multiplied by a function. Paley- Wiener theorem on the analyticity of functions with the compactly supported Fourier transforms. Paley-Wiener-Schwartz theorem on the analytic regularity of tempered distributions with the compactly supported Fourier transform.	LC, S	
Chapter 4: Sobolev spaces and distributions	Topic 4.1. Definition of the classical Sobolev function spaces. Definition of the Bessel potential spaces as subspaces of a dual Schwartz space. Completeness of the classical Sobolev spaces. Inner product on the classical Sobolev space and the Bessel potential space in case of a Hoelder constant 2. Friedrichs mollifiers and approximation by smooth functions.	LC, S	
	Topic 4.2. Existence of a natural isomorphism between the Bessel potential spaces with nonnegative integer smoothness indices and the classical Sobolev spaces. Formulation of the duality theorem for the Bessel potential spaces. Formulation of the Sobolev embedding theorem. Basics of the complex interpolation in the scales	LC	

Course module title	Course module contents (topics)	Academic activities types
	of the classical Sobolev spaces and of the Bessel potential spaces.	

* - to be filled in only for <u>full</u>-time training: *LC* - *lectures; LW* - *lab work; S* - *seminars.*

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classro	om equipment d	and technology su	pport requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	A lecture hall for lecture-type classes, equipped with a set of specialised furniture; board (screen) and technical means of multimedia presentations.	
Seminar	A classroom for conducting seminars, group and individual consultations, current and mid- term assessment; equipped with a set of specialised furniture and technical means for multimedia presentations.	Moving blackboards and equipment for multimedia presentation are advisable
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment.	

* The premises for students' self-studies are subject to MANDATORY mention

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

1. G. Grubb. Distributions and Operators. Graduate Texts in Mathematics (Book 252), Spinger, 2009.

2. F.G. Friedlander, M. Joshi. Introduction to the Theory of Distributions. Cambridge University Press, Cambridge, 1988.

3. G. van Dijk. Generic functions. De Gruyter Graduate Lectures, De Gruyter, Berlin / Boston, 2013

4. A.Ya. Helesmkii. Lectures and Exercises on Functional Analysis. American Mathematical Society, Providence, RI, 2006.

Additional readings:

1. S.L. Sobolev. Some Applications of Functional Analysis to Mathematical Physics. American Mathematical Society, Providence, RI, 1991.

- 2. I.M. Gel'fand, G.E. Shilov. Genericized Functions, Vol. 1: Properties and Operations. American Mathematical Society, Providence, RI, 1964.
- 3. I.M. Gel'fand, G.E. Shilov. Genericized Functions, Vol. 2: Spaces of Fundamental and Genericized Functions. American Mathematical Society, Providence, RI, 1968.

4. D. Haroske, H. Triebel. Distributions, Sobolev Spaces, Elliptic Equations. European Mathematical Society, Zuerich, 2008.

5. S.G. Georgiev. Theory of Distributions. Springer, 2015.

6. J.J. Duistermaat, J.A.C. Kolk. Distributions: Theory and Applications. Springer, 2010.

7. H. Triebel. Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978.

8. R. Adams, J. J.F. Fournier. Sobolev Spaces. 2nd edition. Elsevier, Oxford, 2003.

9. A.P. Robertson, W. Robertson. Topological Vector Spaces. 2nd edition. Cambridge University Press, Cambridge, 1973.

10. D.E. Edmunds, W.D. Evans. Spectral Theory and Differential Operators. Clarendon Press, Oxford, 1987.

Internet sources

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" <u>http://www.biblioclub.ru</u>

- EL "Yurayt" http://www.biblio-online.ru

- EL "Student Consultant" www.studentlibrary.ru

- EL "Lan" http://e.lanbook.com/

- EL "Trinity Bridge"

-

2.Databases and search engines:

- Mathematics Stack Exchange (Q&A for people studying mathematics at any level and professionals in related fields): <u>http://math.stackexchange.com</u>

- ProofWiki (Online compendium of mathematical proofs): https://proofwiki.org/wiki/Category:Distributions

- NCatLab (articles on distributions and related notions from the categorial viewpoint): <u>https://ncatlab.org/nlab/show/distribution</u>

Training toolkit for self- studies to master the course *:

1. The set of lectures on the course "Generic functions"

* The training toolkit for self- studies to master the course is placed on the course page in the university telecommunication training and information system under the set procedure.

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

The assessment toolkit and the grading system* to evaluate the competences formation level (competences in part) upon the course study completion are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor, S.M.

Nikol'skii Mathematical

A.A. Belyaev

Institite

position, department

signature

name and surname

HEAD OF EDUCATIONAL DEPARTMENT A.B. Muravnik

signature

name and surname

HEAD OF HIGHER EDUCATION PROGRAMME: Professor, S.M. Nikol'skii

A.V. Faminskii

Mathematical Institute

position, department

signature

name and surname