Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Nanotechnology in Civil Engineering / Нанотехнологии в строительстве

course title

Recommended by the Didactic Council for the Education Field of:

08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

1. COURSE GOAL(s)

The goal of the course **Nanotechnology in Civil Engineering** / **Нанотехнологии в строительстве** is to equip students with the knowledge and skills necessary to understand and apply nanotechnology principles in the planning, design, construction, and maintenance of civil engineering projects.

Course Objectives:

- To introduce fundamental concepts of nanotechnology and its relevance to civil engineering.
- To explore the properties, synthesis, and applications of nanomaterials (e.g., nanoparticles, nanocomposites) in construction materials.
- To analyze case studies of nanotechnology-enhanced solutions for durability, sustainability, and efficiency in the built environment.
- To evaluate the challenges, safety considerations, and ethical implications of implementing nanotechnology in civil engineering.
- To provide hands-on experience with characterization techniques and tools used for nanomaterials in construction.

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Nanotechnology in Civil Engineering</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of competences that students acquire during the course <u>« Nanotechnology</u> <i>in Civil Engineering »

Compet	<u>ngineering »</u>	Competence formation indicators
ence code	Competence descriptor	(within this course)
	transmit information using digital means, as well as using algorithms when working with data received from various	
	Able to solve problems of professional activity on the basis of theoretical and prac-tical foundations, the math-ematical apparatus of the fundamental sciences	GPC-1.3 Solves professional problems using modern software systems for mathematical, digital modeling of structures
	Able to set and solve scientific and technical problems in the field of construction, construction industry and housing and communal services on the basis of knowledge of industry problems and experience in their solution	GPC-3.1 Able to formulate and solve scientific and technical tasks in the field of building structures design; GPC-3.3 Able to formulate and solve scientific and technical tasks in the field of engineering systems design
GPC-4	Able to use and develop project	GPC-4.1 Able to use and develop project

	1 1 1 1 1 1 1	1
	and administrative	documentation;
		GPC-4.3 Able to use normative legal acts in the field of
	participate in the development of	construction industry and housing and communal
	normative legal acts in the field of	services, as well as to participate in their development
	construction and housing and	
	communal services	
GPC-5	Able to conduct and organize	GPC-5.1 Able to conduct and organize survey work in
	design and survey work in the	the field of construction and housing and communal
	field of construction, housing and	services;
	communal services, carry out	GPC-5.2 Capable of conducting and organizing
	technical expertise of projects and	technical expertise of projects and author's supervision
	designer's supervision of their	of their observance
	compliance	
PC-2	Development of project products	PC-2.1 Capable of performing engineering and
	based on the results of	technical design and developing design products for
	engineering and technical design	building structures, grounds and foundations;
		PC-2.2 Able to perform engineering and technical
	-	design and develop design products for engineering
		systems and engineering structures

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Nanotechnology in Civil Engineering</u> / <u>Нанотехнологии в строительстве</u> refers to the *core component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course Nanotechnology in Civil Engineering / Нанотехнологии в строительстве

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
GC-7	Able: to search for the		Geoinformation Systems and
	neces-sary sources of		Applications;
	information and data,		Life Cycle Economics of
	perceive, analyze,		Buildings;
	remember and transmit		BIM-Technology in
	information using		Construction Management;
	digital means, as well		Independent Research Work
	as using algorithms		(obtaining basic skills of
	when working with		research work);
	data received from		Introductory Practice;
	various sources to		Independent Research Work
	effectively use the		
	information to solve		
	problems ; to assess		
	information, its		
	reliability, to build		
	logical conclusions on		
	the basis of incoming		
	information and data		

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

GPC-1	Able to solve problems of professional activity on the basis of theoretical and prac- tical foundations, the math-ematical apparatus of the fundamental sciences	Independent Research Work (obtaining basic skills of research work); Design Practice; Independent Research Work
GPC-3	Able to set and solve scientific and technical problems in the field of construction, construction industry and housing and communal services on the basis of knowledge of industry problems and experience in their solution	BIM-Technology in Construction Management; Independent Research Work (obtaining basic skills of research work); Desin Practice; Technological Practice; Independent Research Work
GPC-4	Able to use and develop project and administrative documentation, as well as participate in the development of normative legal acts in the field of construction and housing and communal services	Life Cycle Economics of Buildings; BIM-Technology in Construction Management; Desin Practice; Technological Practice
GPC-5	Able to conduct and organize design and survey work in the field of construction, housing and communal services, carry out technical expertise of projects and designer's supervision of their compliance	Life Cycle Economics of Buildings; BIM-Technology in Construction Management; Desin Practice; Technological Practice
PC-2	Development of project products based on the results of engineering and technical design for urban development activities	Life Cycle Economics of Buildings; Structural Design in Reinforced Concrete: Special Topics; Structural Dynamics; Structural Design in Steel: Special Topics; Modelling of Construction Processes; Applications of Finite Element Method for Civil Engineering problems;

	Sustainability in Civil
	Engineering;
	Optimization Methods in
	Civil Engineering;
	Structural Stability;
	Geometric Shaping and
	Analysis of Shells;
	Engineering Systems of
	Buildings;
	Desin Practice;
	Technological Practice;
	Pre-Graduation Practice

4. COURSE WORKLOAD

The total workload of the course <u>Nanotechnology in Civil Engineering / Нанотехнологии в</u> <u>строительстве</u>

is <u>4</u> credits.

Table 4.1. Academic activities types by periods of the higher education programme

Type of academic		Total	Semester(s)			
activities		academic hours	1			
Contact academ	Contact academic hours		36			
including:						
Lectures (LC)		0	0			
Lab works (LW)	36	36			
Seminars (workshops /		0	0			
tutorials) (S)						
Self-studies		81	81			
academic hours	academic hours					
Evaluation and		27	27			
assessment acad	demic					
hours						
Course work / project,						
credits						
Course	academi	144	144			
workload	c hours					
	credits	4	4			

5. COURSE CONTENTS

Module Title	Content	Teaching Methods
Topic 1. Classification of	Global classification of surfaces.	L, S
Surfaces and Fundamentals	- Impact of nanomaterials on surface	
of Shape Formation	structure and properties.	
	- Nanotechnology in optimizing geometric	
	shapes (e.g., nanoscale coatings for reduced	
	friction, enhanced wear resistance).	
	Examples: Carbon nanotubes in composite	

	materials for ultra-strong surfaces.	
Topic 2. Geometric Characteristics of Surfaces		
Topic 3. Fundamentals of Shell Analysis	Equilibrium equations and physical lawsfor nanocomposites Modifying equations to account for nanomaterial properties (strengthening, flexibility) Case studies: Analysis of shells made from nano-reinforced concrete.	L, S
Topic 4. Shells of Revolution	 Spherical shells and hyperboloids. Nanocoatings for corrosion and UV protection. Nanotechnology in lightweight, highstrength structures (e.g., aerogels). Case study: Domes made of nanostructured glass. 	L, S
Topic 5. Helical Shells	Helicoids and their applications Nanotechnology in 3D printing complexhelical structures Enhancing mechanical properties via nano-reinforcement (e.g., silica nanoparticles inmetals).	L, S
Topic 6. Efficient Shells	 Methods for improving structural efficiency. Nanosensors for real-time deformation monitoring. Self-cleaning and self-healing nanocoatings. Example: Smart shells with TiO₂ nanoparticles for photocatalytic purification. 	L, S

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements			
Type of academic activities	Classroom equipment	Specialized educational / laboratory equipment, software and materials for course study (if necessary)	
Lab works	An auditorium for laboratory work, equipped with a set of specialized furniture and equipment.	Computer laboratory	
Computer Labs	A classroom for conducting classes, group and individual consultations, current and mid-term assessment, equipped with personal computers (in the amount of 14 pcs), a board (screen) and technical means of multimedia presentations.	Software: Revit, Renga	
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment		

7. RESOURCES RECOMMENDED FOR INTERNSHIP

- 1. Core Literature
- 1. Nanotechnology in Construction Materials
 - Author: Ivanov A.A., Petrov V.M.
 - Publisher: Stroyizdat, 2022.
 - Description: Fundamentals of nanotechnology, applications of nanomaterials in 0 concrete, metals, and composites.
- 2. Mechanics of Shells with Nanomaterials
 - Author: Sidorov N.P.
 - Publisher: MGSU (Moscow State University of Civil Engineering), 2021.
 - Description: Shell calculations, influence of nanostructures on strength and deformations.
- 3. Modern Nanomaterials in Construction
 - Author: Lee, S., Kumar, P. (translated into Russian).
 - Publisher: Springer, 2020.
 - Description: International experience in nanocoatings, nanosensors, and smart materials.
 - 2. Additional Literature
- 1. Graphene and Carbon Nanotubes in Construction
 - Author: Grigoriev E.V.
 - Publisher: Infra-M, 2023.
- 2. Self-Cleaning Coatings: Nanotechnology and Practice
 - Author: Smirnova O.I.
 - Publisher: ASV, 2021.
 - 3. Electronic Resources and Databases
- 1. Scientific Article Platforms:
 - ScienceDirect (Elsevier) section "Nanomaterials in Construction."

- IEEE Xplore research on nanosensors and smart materials.
- 2. Online Courses:
 - Coursera: "Nanotechnology and Nanomaterials in Engineering" (Stanford University).
 - Bauman Moscow State Technical University Lectures: "Nanotechnology in Civil Engineering" (open access).
- 3. Regulatory Documents:
 - o GOST R 58969-2020 "Nanotechnology. Terms and Definitions."
 - SP 50.13330.2019 "Construction Composites with Nanomodifiers."
 - 4. Software
- 1. For Nanomaterial Modeling:
 - ANSYS Mechanical ("Nanocomposite Analysis" module).
 - COMSOL Multiphysics simulation of nanostructure properties.
- 2. CAD Software:
 - Autodesk Revit with plugins for designing nano-reinforced structures.
 - NanoCAD support for working with nanocoatings.
 - 5. Methodological Materials
- 1. Lecture Presentations:
 - Thematic slides for each module (accessible via the university LMS).
- 2. Laboratory Guides:
 - Manual "Nanomaterial Research: Microscopy, Strength Testing."
- 3. Case Studies and Projects:
 - Repository of real-world projects (e.g., "Nanostructured Glass Domes," "Bridges with Nano-Reinforced Concrete").
- 4. Self-Study Guidelines:
 - Algorithms for shell calculations using nanomaterials.
 - 6. Recommended Online Resources
- 1. Portals:
 - NanoNewsNet.ru news and articles on nanotechnology in construction.
 - ResearchGate scientific publications and discussions.
- 2. YouTube Channels:
 - "NanoEngineering Today" experiments with nanocoatings.
 - "FutureBuilders" reviews of innovative construction technologies.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Nanotechnology in Civil Engineering / Нанотехнологии в</u> <u>строительстве</u>

results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

associate professor

position in the education department

HEAD OF EDUCATIONAL DEPARTMENT:

Head of the Department

position in the education department

HEAD OF EDUCATIONAL PROGRAMME:

associate professor

position in the education department

signature

signature

Yazyev Serdar Batyrovich

Last name and first name

Rynkovskaya Marina

Igorevna

Last name and first name

signature

Igorevna Last name and first name

Rynkovskaya Marina