educational division (faculty/institute/academy) as higher education program developer

COURSE SYLLABUS

Mathematical Modelling/ Математическое моделирование

course title

Recommended by the Didactic Council for the Education Field of:

08.04.01 Civil Engineering

field of studies / specialty code and title

The course instruction is implemented within the professional education program of higher education:

Civil Engineering and Built Environment higher education program profile/specialization title

2025

1. COURSE GOALS

The goal of the course <u>Mathematical Modelling/ Математическое моделирование</u> is to gain knowledge, skills, skills and experience in the field of correct calculation of structures that characterize the stages of competence formation and ensure the achievement of the planned results of the development of the educational program.

The main objectives of the course are the following.

- Develop understanding of mathematical modelling in the context of spatial structures.
- Provide foundational knowledge of fundamental mechanical laws.
- Teach students to formulate and classify mathematical models.
- Introduce analytical and numerical methods for solving structural problems.
- Train students in the use of computational tools such as Mathcad.
- Apply modelling techniques to problems involving deformable solids.
- Introduce methods of structural optimization and design efficiency.
- Strengthen problem-solving and critical thinking abilities.
- Prepare students for practical engineering applications and academic research.

Various structures and structures, the design and construction of which the engineer is engaged in, must be correctly calculated from the point of view of mathematics and physics. For the calculation of complex structures, and especially when considering time factors, knowledge of partial differential equations is simply necessary.

The task of the course is to teach the student to solve complex mathematical problems, to be able to classify them and apply them in practice with different boundary conditions

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course "<u>Mathematical Modelling/ Математическое моделирование</u>" is designed for students to acquire following competences (competences in part):

Competer code		Competence formation indicators (within this course)
GC-1	Able to critically analyze problem situations based on a systematic approach, to develop a strategy of action	GC-1.1 Analyzes the problem, identifying its basic components; GC-1.2 Identifies and ranks the information required to solve the task; GC-1.3 Selects ways to solve the problem, analyzes the possible consequences of their use
	professional activity based on theoretical and practical	GPC-1.1 Selects a mathematical model suitable for the professional problem to be solved, sets the required parameters and boundary conditions;

	с , , , , , , , , , , , , , , , , , , ,	1 .		.1
Table 2.1. List o	f competences the	at students acc	guire during	the course

GPC-1	Able to solve problems of professional activity based on theoretical and practical foundations, the mathematical apparatus of the fundamental sciences	GPC-1.1 Selects a mathematical model suitable for the professional problem to be solved, sets the required parameters and boundary conditions; GPC-1.2 Solves mathematical modeling problems using suitable analytical, numerical, or numerical analytical methods; GPC-1.3 Solves professional problems using modern software systems for mathematical, digital modeling of structures
-------	---	---

GPC-3		GPC-3.1 Able to formulate and solve scientific and technical tasks in the field of building structures design
GPC-6	5	GPC-6.2 Able to choose appropriate research methods
	objects and processes in the field	and carry out research according to the chosen

GPC-6	Able to carry out research of	GPC-6.2 Able to choose appropriate research methods
	objects and processes in the field	and carry out research according to the chosen
	of construction and housing and	methodology;
	communal services	GPC-6.3 Capable of processing, analyzing and drawing
		up research results

3. COURSE IN HIGHER EDUCATION PROGRAM STRUCTURE

The course <u>Mathematical Modelling/ Математическое моделирование</u> refers to the elective component of (B1) block of the higher educational program curriculum.

Within the higher education program students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Mathematical</u> <u>Modelling</u>.

Table 3.1. The list of the higher education program components that contribute to the achievement of the expected learning outcomes as the internship results.

Competence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
GC-1	Able to critically analyze problem situations based on a systematic approach, to develop a strategy of action		Geoinformation Systems and Applications; Independent Research Work (obtaining basic skills of research work); Introductory Practice; Design Practice; Technological Practice; Independent Research Work
GPC-1	Able to solve problems of professional activity based on theoretical and practical foundations, the mathematical apparatus of the fundamental sciences		Independent Research Work (obtaining basic skills of research work); Design Practice; Independent Research Work

GPC-3	scientific and technical problems in the field of construction, construction industry and housing and communal services	BIM-Technology in Construction Management; Independent Research Work (obtaining basic skills of research work); Design Practice; Technological Practice; Independent Research Work
	based on knowledge of industry problems and	Independent Research Work
	experience in their solution	

GPC-6	Able to carry out	Geoinformation Systems and
	research of objects and	Applications;
	processes in the field of	Independent Research Work
	construction and	(obtaining basic skills of
	housing and communal	research work);
	services	Independent Research Work

4. COURSE WORKLOAD

The total workload of the course "<u>Mathematical Modelling/ Математическое</u> <u>моделирование</u>" is 3 credits.

Type of study work		TOTAL,	Semester(s)
Type of study work		acc.	1
Contact academic hours, acc .		36	36
Lectures		18	18
Laboratory work	Laboratory work		18
Seminars (workshops/tutorials)		-	-
Self-studies academic hours		72	72
Evaluation and assessment (exam or pass/fail grading)		27	27
The course total workload	acc.hrs.	108	108
	credits	3	3

Table 4.1 Types of academic activities during the period of the HE programme mastering

5. COURSE MODULE AND CONTENTS

Table 5.1. The content of the discipline (module) by type of educational work

Course Title	Mathematical Modelling	
Course Workload	3 credits / 108 academic hours	
	Course contents	Academic Activities
Course Module Title	Brief Description of the Module	
	Content	
Section 1.	Topic 1.1 Place, purpose and advantage of	
The subject and tasks	mathematical modelling in the process of	
of the course	knowledge of objects and natural	
"mathematical	phenomena. Model, as a tool for the	
modeling of spatial	investigation of objects and phenomena	LC, LW
structures"	and as a tool for managing them.	
	Prerequisites for the successful application	

Course Title	Mathematical Modelling	
Course Workload	3 credits / 108 academic hours	
	Course contents	Academic Activities
Course Module Title	Brief Description of the Module	
	Content	
	of mathematical modelling. Abstract	
	model by R. Kalman. Classification of	
	objects by type of behavior. Analytical	
	and simulation models.	
	Topic 1.2 Stages of mathematical	
	modelling. Historical experience in the	
	formation of mathematical models and	
	solving practical problems by means of	
	mathematics. The task of the trajectory of a ray of light reflecting from a mirror. The	
	problem of the trajectory of a refractive	
	Brachistochrone problem. Models based	
	on the principle of least action and the	
	principle of equilibrium.	
Section 2.	Topic 2.1 Principles of causality.	
Basic fundamental	Equations of state. Postulates about space	
laws in mechanics	and time. The law of conservation.	
	Topic 2.2 The least action. The principle	LC, LW
	of Lagrange. Hamilton-Ostrogradsky	
	principle.	
	Topic 2.3 Stable and unstable equilibrium.	
Section 3.	Euler equations. Principle d'Alembert.	
The concept of a	Topic 3.1 The concept of the model of the object or phenomenon. Mathematical	
mathematical model	model. The requirement for a	
	mathematical model.	
	Topic 3.2 General technology for solving	
	practical problems using mathematics. The	
	sequence of construction and testing of	
	mathematical models on the examples of	
	the simplest problems of mechanics:	LC, LW
	stretching and compression of the beam.	
	Bending of the beam, loss of stability of the beam.	
	Topic 3.3 The test of a mathematical	
	model is an assessment of the state of an	
	object. Models for controlling the	
	parameters of objects and phenomena. The	
	multiplicity of questions about the	
	manifestations of objects and phenomena	
	and the generality of models. Check the	
	adequacy of mathematical models.	
Section 4.	Simplified models.	
Formation of	Topic 4.1 Ideas used as the basis of mathematical models. Reflection of	
mathematical models	properties and characteristics of objects in	
	a mathematical model. Idealization and	
	abstraction. Mathematical language of the	
	formation of a practical problem.	LC, LW
	Characteristic concepts for describing	
	objects and phenomena (energy, mass,	
	force, space, time, etc.) and qualitative and	

6

Mathematical Modelling

Course Title

Course Workload 3 credits / 108 academic hours		
	Course contents	Academic Activities
Course Module Title	Brief Description of the Module Content	
	quantitative representation in models. Topic 4.2 Covariance Tasks of analysis and synthesis. Determining relationships and empirical dependencies in mathematical models. Dimension of the quantities and formulas expressing the problem. Simplification and refinement of the mathematical model. The dimension of the tasks. Analysis of the impact of	
Section 5. Types of mathematical models	simplifications and clarifications. Topic 5.1 Structural and functional models. Discrete and continuous, linear and nonlinear models. Simulation of partial differential equations. The problem of the shapes of the searchlight mirror. Linearization. Variational models. Likely models. Other types of models. Hierarchy of mathematical models. Mathematics Mode Closure	LC, LW
Section 6. Methods for solving problems formulated by mathematical models	Topic 6.1 The investigation of the mathematical problem generated by the created mathematical model. Existence, multiplicity and uniqueness of solutions. The choice of mathematical methods for solving the formulated problem. Exact and close solution. Variational tasks. Topic 6.2 The boundary value problem and the Cauchy problem. Analytical solution. Asymptotic expansions. Ritz method. Bubnov-Galerkin Method. Discretization of tasks. Euler method. Reduction of the solution to the solution of problems of linear algebra. Finite difference method and finite element method. Topic 6.3 Systems of linear equations and their solution. The problem of eigenvalues. Search for extremums of functions and functionals. Newton's method for solving nonlinear problems. Research solutions. Selection and control of solution accuracy. Dimensional control. Verification of models.	LC, LW
Section 7. The use of computing in mathematical modelling	Topic 7.1 The concept of computational experiment. Triad "model-algorithm- program". Numerical simulation. A preliminary investigation of mathematical models. Qualitative analysis. Dimensionless analysis of the problem. Topic 7.2 Approximate solutions. Exact	LC, LW

Course Title	Mathematical Modelling	
Course Workload	3 credits / 108 academic hours	
	Course contents	Academic Activities
Course Module Title	Brief Description of the Module Content	
Section 8. Mathematical	solutions. Algorithm solutions. Programming and problem solving software. Carrying out computer calculations and their analysis. Planning calculations. Processing calculation results. Refinement of computational models. Topic 8.1 Representation of a solid body as a continuum. Other simplifying	
modelling in problems of mechanics of a deformable solid	hypotheses and assumptions. Elastic body Plastic body Internal forces, stresses, deformations, displacements. Stress-strain state of a solid. Strain tensor, stress tensor and principal stress. Hooke's law as an equation of state. Static equilibrium equations and equilibrium equations in motion. Compatibility equations of deformations. Topic 8.2 The expression of the change of energy.The formulation and solution of problems of statics and dynamics of a rigid body. Two dimensional and one- dimensional problems of the theory of elasticity. Topic 8.3 Construction of mathematical models and solving problems of mechanics of liquids and gases. Ideal incompressible fluid. Viscous fluid. Perfect gas. Setting goals. Euler's equation for the motion of an ideal fluid. Tasks hydrostatics. Perfect fluid movement and viscous fluid movement. Navier-Stokes equation. Waves in liquid and gas.	LC, LW
Section 9. Problems of finding the optimal solution and their mathematical modelling	Topic 9.1 Ideas involved in the construction of mathematical models of optimization problems. Variational tasks. The formulation and solution of the Brachistochrone problem. The simplest problems of finding the optimal solution and solving them mathematically. Tasks on the best size of a	LC, LW
	tin can. Economical tasks in construction. Mathematical programming. Modelling by goal function and constraint inequalities	

 \ast - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6.CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Type of academic activities	Classroom equipment	Specialized educational / laboratory equipment, software and materials for
acuvines		course study (if necessary)
Lectures		
	An auditorium for conducting lectures, equipped with a set of specialized furniture; a blackboard (screen) and technical means for multi-media presentations.	
Lab works		Computer laboratory
	An auditorium for laboratory work, equipped with a set of specialized furniture and equipment.	
Computer Labs		Software: MS Office
	A classroom for conducting classes, group and individual consultations, current and	MathCAD Lira
	mid-term assessment, equipped with personal computers (in the amount of 14	SCAD Office
	pcs), a board (screen) and technical means of multimedia presentations.	
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialized furniture and computers with access to the electronic information and	
	educational environment	

• *Table 6.1. Classroom Equipment and Technology Support Requirements*

7. RESOURCES RECOMMENDED FOR COURSE

Main readings:

 Jódar L., Carlos Cortés, Juan, Rodríguez L. A. Mathematical Modelling in Engineering & Human Behaviour 2022 ISBN 9783038978046

URL:https://mdpi.com/books/pdfview/book/1233

Additional readings:

- 1. Alder M. An Introduction to Mathematical Modelling //Heavenforbooks.com. 2023 http://www.mtm.ufsc.br/~daniel/matap/IntMatMod.pdf
- 2. Knox, Gordon D. Engineering / by Gordon D. Knox ; edited by Ellison Hawes 275p. URL:http://dlib.rsl.ru/rsl0100400000/rsl01004445000/rsl01004445020/rsl01004445020.pdf
 - 3. Jurgita Antuchevičienė (Ed.), Edmundas Kazimieras Zavadskas (Ed.), Jonas Šaparauskas (Ed.). Sustainability in Construction Engineering 2018 1 c. ISBN 9783038971665 URL: <u>http://www.mdpi.com/books/pdfview/book/754</u>

Resources of the Internet information and telecommunications network» *Internet sources:*

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

RUDN Electronic Library System (RUDN ELS)

9

http://lib.rudn.ru/MegaPro/Web

- EL "University Library Online" <u>http://www.biblioclub.ru</u>
- EL "Yurayt" <u>http://www.biblio-online.ru</u>
- EL "Student Consultant" <u>www.studentlibrary.ru</u>
- EL "Lan" <u>http://e.lanbook.com/</u>
- EL "Trinity Bridge"
- 2. Databases and search engines:
 - electronic foundation of legal and normative-technical documentation <u>http://docs.cntd.ru/</u>
 - Yandex search engine <u>https:// www .yandex.ru/</u>
 - Google search engine <u>https://www.google.ru/</u>
 - Scopus abstract database <u>http://www.elsevierscience.ru/products/scopus/</u>

Learning toolkits for self- studies:

1. A course of lectures on the course "<u>Mathematical Modelling/ Математическое</u> <u>моделирование</u>"

2. Guidelines for independent work of students in the course "<u>Mathematical Modelling/</u> <u>Математическое моделирование</u> "

3. Guidelines for the implementation and execution of a term paper / project in the course "Structural Design in Reinforced Concrete: Special Topics / <u>Mathematical Modelling/</u> <u>Математическое моделирование</u> "

*The training toolkit and guidelines for the course are placed on the course page in the university telecommunication training and information system under the set procedure.

4. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS COURSE RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course results are specified in the Appendix to the course syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

Associate Professor in the Department of Construction Technology and

Associate Professor of the Department of Construction

Technology and Structural Material

position, educational department

signature

name and surname

Assistant

position, educational department

signature

name and surname

Rynkovskaya M.I.

Dabi G.M.

HEAD OF EDUCATIONAL DEPARTMENT: Head of the Department of						
Construction Technology and Structural Materials		Yazyev S. B.				
position, educational department	signature	name and surname				
HEAD OF HIGHER EDUCATION PROGRAM: Associate Professor of the Department of Construction						
Technology and Structural Materials		Rynkovskaya M.I.				
position, educational department	signature	name and surname				

10