Документ подписан простой электронной подписью

Информация о владельце: ФИО: Ястребов Олег Александрови PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA

Должность: Ректор NAMED AFTER PATRICE LUMUMBA Дата подписания: 22.05.2025 11:42:27

Уникальный программный ключ:

 ${\it ca953a012} \underline{\it od891083f939673078ef1a989dae18} \underline{\textbf{Institute of Environmental Engineering}}$

(наименование основного учебного подразделения (ОУП)-разработчика ОП ВО)

COURSE SYLLABUS

Engineering Ecology / Инженерная экология

(наименование дисциплины/модуля)

Recommended by the Methodological Council for the Education Field:

05.04.06 Ecology and nature management

(код и наименование направления подготовки/специальности)

The discipline is mastered within the framework of the main professional higher education program:

«Integrated Solid Waste Management»

(наименование (профиль/специализация) ОП ВО)

1. COURSE GOALS

The course goal is to familiarization with theoretical basics and practical approachs of the impact of main industrial branches on the environmental systems as well as pollution prevention technologies.

2. LEARNING OUTCOMES

The mastering of the discipline "Engineering ecology" is aimed at the formation of the following competencies (parts of competencies) in students:

Table 2.1. List of competencies formed by students during the development of the discipline (LEARNING OUTCOMES)

Code	Competence	Indicators of competence achievement (within the framework of this discipline)		
	1	PC-10.1 Capable of monitoring compliance with		
	the environment using	environmental protection requirements		
	environmental technologies	PC-10.2 Capable of developing an action plan aimed		
PC-10		at meeting the requirements of regulatory legal acts		
FC-10		in the field of environmental protection, taking into		
		account best practices		
		PC-10.3 Capable of analyzing large amounts of		
		professional information		
	Able to determine the structure	PC-11.1 Knows methods of zoning the assessed		
	and master the methods of zoning	territory according to the permissible anthropogenic		
	the assessed territory according to	load on environmental components		
PC-11	the types of anthropogenic load	PC-11.2 Able to determine the structure of		
	and environmental components	anthropogenic load on environmental components		
		PC-11.3 Able to identify areas of increased		
		environmental hazard		

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The discipline "Engineering ecology" refers to Compulsory Disciplines of the Higher Education Program.

Within the framework of the higher education program, students also master other disciplines and/or practices that contribute to expected learning outcomes of the discipline "Engineering ecology".

Table 3.1. List of Higher Education Program components that contribute to expected learning outcomes

Code	Competence	Previous Disciplines	Subsequent Disciplines	
	Competence	(Modules)	(Modules)	
	Capable of monitoring	ОВОС объектов в сфере		
PC-10	the state of the	управления отходами	Master's Thesis Defence /	
	environment using	/Environmental impact	State Exam /	
	environmental	assessment (EIA) of SWM	State Exam /	
	technologies	objects		

Code	Competence	Previous Disciplines (Modules)	Subsequent Disciplines (Modules)
PC-11	Able to determine the structure and master the methods of zoning the assessed territory according to the types of anthropogenic load and environmental components	no	Master's Thesis Defence State Exam

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

Workload of the course «Engineering ecology» is 3 ECTS.

Table 4.1. Types of academic activities during the period of the HE program mastering

Вид учебной работы		TOTAL	Semesters			
		IOIAL	1	2	3	4
Contact academic hours		34			34	
Incl.:						
Lectures		17			17	
Lab work						
Seminars		17			17	
Self-study		47			47	
Evaluation and assessment		27			27	
Total workload	Ac.hours	108			108	·
Total workload	ECTS	3			3	

5. COURSE CONTENTS

Table 5.1. The content of the discipline (module) by type of academic work

Name of the discipline section	Content of the section (topics)	Type of academic activity*
Anthropogenic processes as a factor of environmental pollution.	Modern anthropogenic activities and environmental pollution factors. OS components: atmosphere, hydrosphere, pedosphere. Features of the distribution of ecotoxicants in abiotic and biotic components.	L, S
Self-cleaning ability of ecosystems. Ecosystem sustainability parameters	Principles of the existence of ecosystems. Homeostasis. Resistance of ecosystems to pollution. Cycle of substances and elements. Soil microbiocenosis and soil functions.	L, S
	The ability of ecosystems to self-purification. Abiotic processes of self-purification. Biotic processes of self-purification.	L, S
	Microbiocenoses of water bodies. Air microflora. Degree and speed of self-	L, S

	1 ' A ' '1 /' ' ' C /1	
	cleaning. Assimilative capacity of the	
	ecosystem	
Sources and types of	\mathcal{E}	L, S
hydrosphere pollution.	Classification and composition of	
Wastewater	wastewater. Types of wastewater pollution.	
	Modern methods of wastewater treatment.	L, S
	Technological cleaning schemes.	
	Organization of closed water production	
	cycles.	
Sources and types of	Sources and types of air pollution. Classification	L, S
atmospheric pollution.	and composition of gas-air emissions.	, , , , , , , , , , , , , , , , , , ,
Gas-air emissions.	Principles of atmospheric air protection. Modern	L, S
	methods of cleaning gas-air emissions and	,
	protecting atmospheric air.	
Sources and types of	Sources and types of pedosphere pollution. Solid	L, S
pedosphere pollution.	waste concept. Sources of generation and	
Solid waste	classification of waste. Hazardous waste	
	Fundamentals of sustainable waste management.	L, S
	Energy and material potential of waste.	
	Principles of the circular economy.	
	Sources of formation of solid industrial waste.	L, S
	Municipal solid waste. Environmental features	
	of hazardous waste.	
Modern methods of solid	Basic methods of industrial non-radioactive	L, S
waste and sewage sludge	waste liquidation and processing. Disposal in	
handling	landfills and dumpsites. Heat treatment.	
	Basic methods of processing and disposal of	L, S
	municipal solid waste. Sorting and use as	
	secondary raw materials.	
Accumulated	Classification of NVOS objects. Stages and	L, S
environmental damage	methods of environmental rehabilitation of	
(AED). AED objects and	environmental waste facilities: technical,	
their remediation	biological.	
(restoration)	Remediation of soils and closed landfills. Soils	L, S
	and grounds treatment from ecotoxicants	
	(petroleum products, heavy metals). Biological	
	methods for restoring reservoirs. Purification of	
	water bodies from oil products and heavy metals	

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Classroom for Academic Activity Type	CLASSROOM EQUIPMENT	Specialized learning, laboratory equipment, software and materials for the mastering the course		
	furniture; a board (screen) and technical means of multimedia presentations.	technical equipment: HP PRO system unit, HP-		
Seminars	Classroom, equipped with a set of specialized furniture; whiteboard; a set of devices includes portable multimedia projector, laptop, projection screen, Stable wireless Internet connection. Software: Microsoft Windows, MS Office / Office 365, MS Teams, Chrome (latest stable release), Skype	Windows 7 corporate. License No. 5190227, date of issue 03/16/2010 MS		
Self-studies	An auditorium for independent work of students (can be used for seminars and consultations), equipped with a set of specialized furniture and computers with access to an electronic information and educational environment.	-		

7. RECOMMENDED SOURCES FOR COURSE STUDIES

Main reading:

- 1. Saxena, Gaurav, R. Kishor, and R. N. Bharagava. Bioremediation of industrial waste for environmental safety. Springer Singapore, 2020..
- 2. Foo D. C. Y., Gopakumar S. T., Show P. L. Green Technologies: Bridging Conventional Practices and Industry 4.0. MDPI-Multidisciplinary Digital Publishing Institute, 2020.
- 3. Coelho S. T. et al. (ed.). Municipal Solid Waste Energy Conversion in Developing Countries: Technologies, Best Practices, Challenges and Policy. Elsevier, 2019.
- 4. Kumar S., Kalamdhad A., Ghangrekar M. M. (ed.). Sustainability in Environmental Engineering and Science: Select Proceedings of SEES 2019. Springer, 2020.
- 5. Cairncross S., Feachem R. Environmental health engineering in the tropics: Water, sanitation and disease control. Routledge, 2018.

Additional sources:

- 1. Mihelcic J. R., Zimmerman J. B. Environmental engineering: Fundamentals, sustainability, design. John wiley & sons, 2021.
- 2. Jain S. K., Singh V. P. Engineering hydrology: an introduction to processes, analysis, and modeling. McGraw-Hill Education, 2019.
- 3. Salem M. A. et al. Environmental technology and a multiple approach of competitiveness //Future Business Journal. -2020. T. 6. No. 1. C. 1-14.
- 4. Wang L. K. et al. (ed.). Integrated natural resources management. Switzerland : Springer Nature, 2021. T. 20.

Internet-sources:

- 1. Electronic library system of the RUDN and third-party electronic library systems, to which university students have access on the basis of concluded contracts:
 - electronic library system of the RUDN University http://lib.rudn.ru/MegaPro/Web
- electronic library system «Университетская библиотека онлайн» http://www.biblioclub.ru
 - electronic library system Юрайт http://www.biblio-online.ru
 - electronic library system «Консультант студента» www.studentlibrary.ru
 - electronic library system «Лань» http://e.lanbook.com/
 - electronic library system «Троицкий мост»
 - 2. Databases and search engines:
- electronic fund of legal and regulatory and technical documentation http://docs.cntd.ru/
 - Yandex search engine https://www.yandex.ru/
 - Google search engine https://www.google.ru/
 - abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/
 -

Educational and methodological materials for independent work of students during the development of the discipline/ module *:

- 1. A course of lectures on the discipline "Engineering ecology".
- * all educational and methodological materials for independent work of students are placed in accordance with the current procedure on the discipline page in the Telecommunication educational and Information System!

8. MID-TERM ASSESSMENT AND EVALUATION TOOLKIT

Evaluation materials and a point-rating system* for assessing the level of competence formation (part of competencies) based on the results of mastering the discipline "Engineering ecology" are presented in the Appendix to this Work Program of the discipline.

* - evaluation toolkit and ranking system are formed on the basis of the requirements of the relevant local regulatory act of the RUDN (regulations / order).

EVELOPER: Associate Professor of the		IZI . I M.D.	
ESandPQM Department		Kharlamova M.D.	
Position, Department	Signature	Name	
EAD OF THE DEPARTMENT:			
EAD OF THE DEPARTMENT: ESandPQM Department		Savenkova E.V.	

Associate Professor of the EM Department

Kapralova D.O.