Документ подписан простой электронной подписью Информация о владельце: ФИО: Ястребфедеранка в Росударственное	автономное образовательное учреждение высшего образования
Должность: Ректор «Российский унин Дата подписания: 16.05.2024 11:42:25	ерситет дружбы народов имени Патриса Лумумбы»
Уникальный программный ключ Факультет фи	зико-математических и естественных наук вного учебного подразделения (ОУП)-разработчика ОП ВО)
са953a012 0d891085f)396730/8ef1a969dae18a (наименование осно	вного учебного подразделения (ОУП)-разработчика ОП ВО)
РАБОЧ	АЯ ПРОГРАММА ДИСЦИПЛИНЫ
	КВАНТОВАЯ ТЕОРИЯ
Рекомендована МССН дл	(наименование дисциплины/модуля) я направления подготовки/специальности:
(vol v vol)	03.03.02 ФИЗИКА
(код и наим	енование направления подготовки/специальности)

Освоение дисциплины ведется в рамках реализации основной профессиональной образовательной программы высшего образования (ОП ВО):

ФИЗИКА

(наименование (профиль/специализация) ОП ВО)

1. ЦЕЛЬ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина «Квантовая теория» входит в программу бакалавриата «Физика» по направлению 03.03.02 «Физика» и изучается в 6, 7 семестрах 3, 4 курсов. Дисциплину реализует Научно-образовательный институт физических исследований и технологий. Дисциплина состоит из 10 разделов и 10 тем и направлена на изучение одного из разделов теоретической физики.

Целью освоения дисциплины является изучение микроскопической теории вещества. Курс опирается на полученные ранее знания по математике (математический анализ, методы математической физики) и физике (классическая и релятивистская механика, электродинамика) и в свою очередь является основой специальных курсов.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Освоение дисциплины «Квантовая теория» направлено на формирование у обучающихся следующих компетенций (части компетенций):

Таблица 2.1. Перечень компетенций, формируемых у обучающихся при освоении дисциплины (результаты освоения дисциплины)

Шифр	Компетенция	Индикаторы достижения компетенции (в рамках данной дисциплины)
ОПК-1	Способен применять базовые знания в области физикоматематических и (или) естественных наук в сфере своей профессиональной деятельности;	ОПК-1.1 Знает основные законы, модели и методы исследования физических процессов и явлений; ОПК-1.2 Применяет физические и математические модели и методы при решении теоретических и прикладных задач;

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОП ВО

Дисциплина «Квантовая теория» относится к обязательной части блока 1 «Дисциплины (модули)» образовательной программы высшего образования.

В рамках образовательной программы высшего образования обучающиеся также осваивают другие дисциплины и/или практики, способствующие достижению запланированных результатов освоения дисциплины «Квантовая теория».

Таблица 3.1. Перечень компонентов ОП ВО, способствующих достижению запланированных результатов освоения дисциплины

Шифр	Наименование компетенции	Предшествующие дисциплины/модули, практики*	Последующие дисциплины/модули, практики*
ОПК-1	Способен применять базовые знания в области физико-математических и (или) естественных наук в сфере своей профессиональной деятельности;	Химия; Физический практикум по механике; Теоретическая механика; Механика; Молекулярная физика; Электричество и магнетизм; Оптика; Атомная физика; Математический анализ; Электродинамика;	

Шифр	Наименование	Предшествующие дисциплины/модули,	Последующие дисциплины/модули,
шифр	компетенции	практики*	практики*
		молекулярной физике;	
		Физический практикум по	
		электричеству и магнетизму;	
		Физический практикум по	
		оптике;	
		Физический практикум по	
		атомной физике;	
		Линейная алгебра и	
		аналитическая геометрия;	
		Дифференциальные уравнения;	
		Теория вероятностей и	
		математическая статистика;	
		Уравнения математической	
		физики;	
		Векторный и тензорный анализ;	
		Теория функций комплексного	
		переменного;	
		Интегральные уравнения и	
		вариационное исчисление;	

^{* -} заполняется в соответствии с матрицей компетенций и СУП ОП ВО ** - элективные дисциплины /практики

4. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Общая трудоемкость дисциплины «Квантовая теория» составляет «6» зачетных единиц.

Таблица 4.1. Виды учебной работы по периодам освоения образовательной программы высшего образования для очной формы обучения.

Ριμη γιμοδιμού ποδοστι	ВСЕГО, ак.ч.		Семестр(-ы)	
Вид учебной работы			6	7
Контактная работа, ак.ч.	136		64	72
Лекции (ЛК)	68		32	36
Лабораторные работы (ЛР)	0		0	0
Практические/семинарские занятия (СЗ)	68		32	36
Самостоятельная работа обучающихся, ак.ч.	62		8	54
Контроль (экзамен/зачет с оценкой), ак.ч.	18		0	18
Общая трудоемкость дисциплины	ак.ч.	216	72	144
	зач.ед.	6	2	4

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Таблица 5.1. Содержание дисциплины (модуля) по видам учебной работы

	аолица 5.1. Сооержание оисциплины (мооуля) по виоам учеоной расоты		Вид	
Номер раздела	Наименование раздела дисциплины		Содержание раздела (темы)	
Раздел 1	Предмет квантовой теории.	1.1	Предмет и место квантовой механики в структуре теоретической физики. Классические и квантовые закономерности. Принцип причинности в квантовой области. Диалектика непрерывного и дискретного в квантовой теории (корпускулярно-волновые свойства микрообъектов).	ЛК, СЗ
Раздел 2	Основные положения квантовой теории.	2.1	Аналогия между классической механикой и оптикой. Волновые пакеты. Групповая и фазовая скорости. Постоянная Планка. Уравнение Шредингера (общий и стационарный случаи). Интерпретация волновой функции и состояния физических систем. Простейшие одномерные задачи. Линейный осциллятор с точки зрения уравнения Шредингера. Линейные операторы. Собственные функции оператора Гамильтона и их ортогональность. Общая теория линейных операторов. Собственные значения и собственные функции эрмитовых операторов. Операторы материальной точки (координата, импульс, момент импульса). Квазиклассическое приближение. Метод Вентцеля—Крамерса—Бриллюэна. Квантование по Бору—Зоммерфельду.	ЛК, СЗ
Раздел 3	Соотношение неопределенностей и задача об атоме водорода.	3.1	Соотношение неопределенностей. Различные пути вывода соотношения неопределенностей для координаты и импульса, для времени и энергии. Объективный характер ограничений, накладываемых соотношением неопределенности, и их интерпретация в физике. Использование соотношения неопределенностей для качественных оценок в квантовой теории. Матричное представление операторов. Алгебра матриц. Эрмитовы матрицы. Задачи о собственных значениях. Унитарные матрицы и преобразования. Наблюдаемые величины и матричное представление соответствующих операторов. Момент импульса. Перестановочные соотношения для компонент момента. Собственные значения момента и собственные функции. Связь между орбитальным и магнитным квантовыми числами. Электрон в центральном поле. Сферические функции. Общий случай центральных сил. Атом водорода и классификация уровней.	ЛК, СЗ
Раздел 4	Квантовая динамика.	4.1	Зависимость наблюдаемых величин от времени. Шредингеровское и гейзенберговское представления. Квантовые скобки Пуассона. Квантовые уравнения Гамильтона. Законы сохранения и сохраняющиеся величины. Преобразования симметрии. Квантовый аспект теоремы Нетер. Законы сохранении энергии, импульса, момента, четности.	лк, сз
Раздел 5	Теория возмущений.	5.1	Стационарная теория возмущений. Линейный осциллятор, возмущенный постоянной силой.	ЛК, СЗ

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)		Вид учебной работы*
		Галеркина. Решение зад методу Ритца. Случай в Штарка для водорода. В возмущений. Квантовы приближение и задачи о и поглощение радиации Эйнштейна. Правила от собственных функций. Теория спина Паули. М магнитный момент. Эле поле (спиновые нерелят релятивистские бесспин Нормальный и аномаль	вырождения. Эффект Нестационарная теория е переходы. Борновское рассеянии. Испускание в Метод коэффициентов бора и свойства атрицы Паули. Спин и ектрон в центральном гивистские поправки и новые поправки).	
Раздел 6	Спин и теория многих частиц.	атома. Периодическая с Менделеева. Тонкая стр линий. Атомные мульти тождественных частиц. Статистики Больцмана, Эйнштейна и статистик Статистические веса. За квантовой механике. Те Ортогелий и парагелий. Ортоводород и паравод Экспериментальное под Паули.	система элементов оуктура спектральных иплеты. Система Принцип Паули. статистика Бозе— а Ферми—Дирака. адача многих тел в сория атома гелия. Молекула водорода. ород. цтверждение принципа	ЛК, СЗ
Раздел 7	Основы квантовой теории рассеяния.	7.1 Рассеяние твердой сфер явление тени. Матрица	рвений. Фазовый анализ. рой, кулоновским полем, рассеяния. Парциальное вссеяния. Борновский ряд.	ЛК, СЗ
Раздел 8	Основы релятивистской квантовой теории.	Релятивистский электро свободного электрона Д и их свойства. Гамильто знака энергии и истолко уровней энергии. Спин Дирака в электромагнитеория). Теория атома в	он Дирака. Теория Дирака. Матрицы Дирака ониан. Неопределенность ование отрицательных электрона. Электрон гном поле (общая водорода в гивистской форме. Закон вских спиноров и ров из спинорных	ЛК, СЗ
Раздел 9	Основные представления квантовой теории поля и физики частиц.	Распространение кванто переменного числа част квантование). Поле как осцилляторов. Обобщен	овой механики на случай сиц (вторичное совокупность ние канонических ошений на случай поля. поля. Основные ых частицах, таблица ваконы сохранения в и лептонный заряды. гарных частиц:	ЛК, СЗ
Раздел 10	Основы физики элементарных частиц.		ний элементарных частиц: гные и слабые бенности. Составные гастиц (восьмеричный	ЛК, СЗ

Номер раздела	Наименование раздела дисциплины	Содержание раздела (темы)	
		(глюоны как переносчики взаимодействия). Принцип калибровочной симметрии. Электрослабая теория. Релятивистское описание элементарных частиц: основные типы полей(скалярное, векторное, спинорное) и уравнения для них. Связь спина со статистикой. Основные дискретные симметрии: отражения пространства и времени, зарядовое сопряжение. СРТ-теорема. Космические лучи, их состав и спектр. Теории множественного образования	
		элементарных частиц. Каскадные процессы. Теории происхождения космических лучей.	

^{*} - заполняется только по **ОЧНОЙ** форме обучения: ЛК – лекции; ЛР – лабораторные работы; С3 – семинарские занятия.

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Таблица 6.1. Материально-техническое обеспечение дисциплины

Тип аудитории	Оснащение аудитории	Специализированное учебное/лабораторное оборудование, ПО и материалы для освоения дисциплины (при необходимости)
Лекционная	Аудитория для проведения занятий лекционного типа, оснащенная комплектом специализированной мебели; доской (экраном) и техническими средствами мультимедиа презентаций.	
Семинарская	Аудитория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, оснащенная комплектом специализированной мебели и техническими средствами мультимедиа презентаций.	
Для самостоятельной работы	Аудитория для самостоятельной работы обучающихся (может использоваться для проведения семинарских занятий и консультаций), оснащенная комплектом специализированной мебели и компьютерами с доступом в ЭИОС.	

^{* -} аудитория для самостоятельной работы обучающихся указывается ОБЯЗАТЕЛЬНО!

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Основная литература:

- 1. Ландау, Л.Д. Теоретическая физика в 10 томах. т.3. Квантовая механика (нерелятивная теория) / Л.Д. Ландау, Е.М. Лившиц. М.: Физматлит, 2016. 800 с.
- 2. Иродов, И.Е. Квантовая физика. Основные законы: Учебное пособие / И.Е. Иродов. М.: Бином, 2014. 256 с.

Дополнительная литература:

- 1. Соколов А.А. и Тернов И.М. Квантовая механика и атомная физика. М.: Просвещение, 1970. 424 с.
- 2. Энрико Ферми. Лекции по квантовой механике. Ижевск. Регулярная и хаотическая динамика. 2000

Ресурсы информационно-телекоммуникационной сети «Интернет»:

- 1. ЭБС РУДН и сторонние ЭБС, к которым студенты университета имеют доступ на основании заключенных договоров
- Электронно-библиотечная система РУДН ЭБС РУДН http://lib.rudn.ru/MegaPro/Web
 - ЭБС «Университетская библиотека онлайн» http://www.biblioclub.ru
 - ЭБС Юрайт http://www.biblio-online.ru
 - ЭБС «Консультант студента» www.studentlibrary.ru
 - ЭБС «Троицкий мост»
 - 2. Базы данных и поисковые системы
- электронный фонд правовой и нормативно-технической документации http://docs.cntd.ru/
 - поисковая система Яндекс https://www.yandex.ru/
 - поисковая система Google https://www.google.ru/
 - реферативная база данных SCOPUS

http://www.elsevierscience.ru/products/scopus/

Учебно-методические материалы для самостоятельной работы обучающихся при освоении дисциплины/модуля*:

- 1. Курс лекций по дисциплине «Квантовая теория».
- * все учебно-методические материалы для самостоятельной работы обучающихся размещаются в соответствии с действующим порядком на странице дисциплины <u>в ТУИС!</u>

8. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ И БАЛЛЬНО-РЕЙТИНГОВАЯ СИСТЕМА ОЦЕНИВАНИЯ УРОВНЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ ПО ДИСЦИПЛИНЕ

Оценочные материалы и балльно-рейтинговая система* оценивания уровня сформированности компетенций (части компетенций) по итогам освоения дисциплины «Квантовая теория» представлены в Приложении к настоящей Рабочей программе дисциплины.

* - ОМ и БРС формируются на основании требований соответствующего локального нормативного акта РУДН.

Доцент ИФИТ		Саха Биджан
Должность, БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ БУП:		
		Кравченко Николай
И.О.директора ИФИТ		Юрьевич
Должность БУП	Подпись	Фамилия И.О.
РУКОВОДИТЕЛЬ ОП ВО:		
Профессор		Лоза Олег Тимофеевич
Должность, БУП	Подпись	Фамилия И.О.

РАЗРАБОТЧИК: