Уникальный программный ключ: ca953a0120d891083f939673078ef1a989dae18a

Academy of Engineering

LUMUMBA

RUDN University

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS

Applications of Finite Element Method for Civil Engineering problems

course title

Recommended by the Didactic Council for the Education Field of:

08.04.01 Civil Engineering

field of studies / speciality code and title

The course instruction is implemented within the professional education programme of higher education:

Civil Engineering and Built Environment

higher education programme profile/specialisation title

2025

1. COURSE GOAL(s)

The goal of the course <u>Applications of Finite Element Method for Civil Engineering</u> <u>problems</u> is to gain knowledge, skills, skills and experience in the field of calculation of structures and structures that characterize the stages of competence formation and ensure the achievement of the planned results of the development of the educational program.

The main objectives of the discipline Applications of Finite Element Method for Civil Engineering problems are the following. FEM in the calculations of building structures is an experimental and theoretical science, where experimental data and theoretical studies are widely used. Various structures and structures, the design and construction of which is engaged in the engineer, must be de-signed for strength, rigidity, stability. This discipline teaches the student the correct selection of finite elements and their sizes for solving specific construction problems using the method of forces or displacements

2. REQUIREMENTS FOR LEARNING OUTCOMES

The course <u>Applications of Finite Element Method for Civil Engineering problems</u> implementation is aimed at the development of the following competences (competences in part):

Table 2.1. List of	competences that students acquire during the course <u>«Applications o</u>	f
Finite Element Method	for Civil Engineering problems»	

Compet ence code	Competence descriptor	Competence formation indicators (within this course)
PC-2	Development of project products based on the results of engineering and technical design for urban development activities	PC-2.1 Capable of performing engineering and technical design and developing design products for building structures, grounds and foundations; PC-2.2 Able to perform engineering and technical design and develop design products for engineering systems and engineering structures

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course <u>Applications of Finite Element Method for Civil Engineering problems</u> refers to the *elective component* of (B1) block of the higher educational programme curriculum.

Within the higher education programme students also master other disciplines (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course <u>Applications of Finite Element Method for Civil Engineering problems</u>.

Table 3.1. The list of the higher education programme components that contribute to the achievement of the expected learning outcomes as the internship results.

Comp etence code	Competence descriptor	Previous courses / modules, internships	Subsequent courses / modules, internships
PC-2	Development of project	Digital technologies in	Desin Practice;
	products based on the	construction;	Technological Practice;
	results of engineering	Structural Design in Steel;	Pre-Graduation Practice
	and technical design for	Nanotechnology in Civil	
	urban development	Engineering;	
	activities	Structural Design in	
		Reinforced Concrete:	
		Special Topics;	
		Structural Dynamics;	
		Structural Design in	
		Reinforced Concrete;	
		Building materials:	

Special Topics; Structural Design in Steel:	
Special Topics;	
Modelling of	
Construction Processes	

4. COURSE WORKLOAD

The total workload of the course <u>Applications of Finite Element Method for Civil Engineering</u> <u>problems</u> is <u>3</u> credits.

able 4.1. Academic activities types by periods of the higher education programme				

Type of aca	demic	Total	Semester(s)			
activities		academic	3			
		nours				
Contact academ	ic hours	36	36			
including:						
Lectures (LC)		18	18			
Lab works (LW)	0	0			
Seminars (work	shops /	18	18			
tutorials) (S)						
Self-studies		45	45			
academic hours						
Evaluation and		27	27			
assessment acad	demic					
hours						
Course work / project,			1			
credits						
Course	academi	108	108			
workload	c hours					
	credits	3	3			

5. COURSE CONTENTS

Modules	Contents (topics)	Academic activities types *
Section 1.	Topic 1.1 Plane stress and plan strain	LC, S
Plane Stress and Plane	approximations. Coordinate systems. Displacement	
Strain Theory	of material points. State of strain. State of stress.	
	Stress equilibrium at a point.	
	Topic 1.2 Constitutive equations. Boundary	
	conditions. Differential form of the governing	
	equations. Weighted residual method. Integral form	
	of the governing equations.	
Section 2.	Topic 2.1 Finite element concept. Description of	LC, S
Introduction to the finite	finite element shape. Quadrilateral elements.	
element method	Triangular elements. Interpolation of variables in	
	finite elements.	
	Topic 2.1 Differentiation of functions in finite	
	elements: Differentiation of shape functions.	
	Differentiation of behavioral variables	
	Topic 2.1 Integration of functions in finite elements:	
	Integration over quadrilateral elements; Integration	

Modules Contents (topics)		Academic activities types *
	over triangular elements. Topic 2.1 Numerical integration. One-dimensional Gauss integration: Gauss integration in quadrilaterals; Gauss integration in triangles	
Section 3. Potential energy and approximate analysis	This section will enable the student to: a) Develop the expressions for strain energy, work done and potential energy for beam and bar problems	LC, S
	 b) Understand and apply the concept of minimum potential energy. c) Understand the Rayleigh-Ritz method as an introduction to the finite element method 	
Section 4. Finite element formulation and application of bar elements	 This section will enable the student to: a) Recognize the displacement field and shape functions used in the formulation of a bar finite element. b) Derive the stiffness matrix as well as load vector due to various load conditions acting on a bar element. c) Perform a finite element analysis for a complete bar problem in order to evaluate displacements and stresses along the length of the bar. d) Judge on the accuracy of a specific bar element mesh used to solve a certain bar problem 	LC, S
Section 5. Introduction to theory of elasticity	This section will enable the student to understand the basic equilibrium and kinematic equations, the constitutive relations as well as the potential energy expression for 2-D plane stress and plane strain elasticity problems	LC, S
Section 6. Shape functions for 2-D problems	 This section will enable the student to: a) Recognize various types of elements used to solve 2-D plane problems. b) Recognize the natural coordinate systems, the shape functions used in various 2-D plane elements. c) Evaluate the Jacobian expression for various 2-D plane elements 	LC, S
Section 7. Finite element formulation and application by constant stress triangular (CST) element	 This section will enable the student to: a) Derive the stiffness matrix as well as the load vector due to various load conditions acting on a CST element. b) Know how to handle the effect of inclined boundaries. c) Perform finite element analysis of 2-D problems using CST elements. 	LC, S
Section 8. Practical consideration in modelling	This section will enable the student to: a) Recognize some basic considerations when laying out a finite element mesh including element size and grading.	LC, S

Contents (topics)	Academic activities types *
b) Know how to number a finite element mesh in	
order to optimize the computer storage and the	
running time	
	Contents (topics) b) Know how to number a finite element mesh in order to optimize the computer storage and the running time

* - to be filled in only for full -time training: LC - lectures; LW - lab work; S - seminars.

6. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialized educational / laboratory equipment, software and materials for course study (if necessary)
Lectures	An auditorium for conducting lectures, equipped with a set of specialized furniture; a blackboard (screen) and technical means for multi-media presentations.	
Seminars	A classroom for conducting seminars, group and individual consultations, current and midterm assessment; equipped with a set of specialised furniture and technical means for multimedia presentations.	
Computer Labs	A classroom for conducting classes, group and individual consultations, current and mid-term assessment, equipped with personal computers (in the amount of 14 pcs), a board (screen) and technical means of multimedia presentations.	Software: SCAD Office, Lira, Ansys
Self-studies	A classroom for independent work of students (can be used for seminars and consultations), equipped with a set of specialised furniture and computers with access to the electronic information and educational environment	

7. RESOURCES RECOMMENDED FOR INTERNSHIP

Main readings:

1. Advanced Finite Element Method in Structural Engineering. 2019. Publisher: Springer Berlin Heidelberg. ISBN: 978-3-642-00316-5

2. Norrie, D.H. A first course in the finite element method. 3(2)1987. 162–163 p. ISBN:0534552986.

3. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J. Cook, Malkus, Plesha, Witt - Concepts and Application of Finite Element Analysis - 4a. ed. - J. Wiley - 2022 – 733 2022. *Additional readings:*

1. Algorithms for Solving the Parametric Self-Adjoint 2D Elliptic Boundary-Value Problem Using High-Accuracy Finite Element Method [Text] = Algorithms for solving the Parametric Self-Adjoint elliptic boundary value problem in a two-dimensional domain by the high-order finite element method

// Bulletin of the Peoples ' Friendship University of Russia: Mathematics. Computer science. Physics. - 2017. - no. T. 25 (1). - C. 36-55. http://dx.doi.org/10.22363/2312-9735-2017-25-1

2. Gusev Alexander Alexandrovich. Finite Element Method of High-Order Accuracy for solving Two-Dimensional Elliptic Boundary-Value Problems of Two and Three Identical Atoms in a Line : article in English / A. A. Gusev // Bulletin of the Russian University of Friendship of Peoples: Mathematics. Computer science. Physics. - 2018. - no. t. 26 (3). - p. 226-243. http://journals.rudn.ru/miph/article/view/18988/16003

3. Solution of the Boundary-Value Problem for a Systems of ODEs of Large Dimension: Benchmark Calculations in the Framework of Kantorovich Method [Text] = Solution of boundary-value problems for systems of ODES of large dimension: reference calculations within the framework of the Kantorovich method. Computer science. Physics. - 2016. - No. 3. - p. 31-37. http://journals.rudn.ru/miph/article/view/13387/12817

Internet sources:

1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:

- RUDN Electronic Library System (RUDN ELS) <u>http://lib.rudn.ru/MegaPro/Web</u>

- EL "University Library Online" http://www.biblioclub.ru

- EL "Yurayt" http://www.biblio-online.ru

- EL "Student Consultant" www.studentlibrary.ru

- EL "Lan" <u>http://e.lanbook.com/</u>

- EL "Trinity Bridge"

2. Databases and search engines:

- electronic foundation of legal and normative-technical documentation http://docs.cntd.ru/

- Yandex search engine https://www.yandex.ru/

- Google search engine <u>https://www.google.ru/</u>

- Scopus abstract database <u>http://www.elsevierscience.ru/products/scopus/</u>

The training toolkit and guidelines for a student:

1. Collection of lectures on the course <u>Applications of Finite Element Method for Civil</u> <u>Engineering problems</u>.

* The training toolkit and guidelines for the course are placed on the internship page in the university telecommunication training and information system under the set procedure..

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATION OF STUDENTS' COMPETENCES LEVEL AS INTERNSHIP RESULTS

The assessment toolkit and the grading system* to evaluate the level of competences (competences in part) formation as the course <u>Applications of Finite Element Method for Civil Engineering</u> <u>problems</u> results are specified in the Appendix to the internship syllabus.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

DEVELOPERS:

associate professor
position in the education department signature

HEAD OF EDUCATIONAL DEPARTMENT:

Head of the Department

position in the education department

HEAD OF EDUCATIONAL PROGRAMME:

associate professor

position in the education department

Rynkovskaya Marina Igorevna

Last name and first name

Yazyev Serdar Batyrovich

Last name and first name

Rynkovskaya Marina

Igorevna

Last name and first name

signature

signature