ACADEMY OF ENGINEERING

educational division (faculty/institute/academy) as higher education program developer

COURSE SYLLABUS

Management of Business Operations of Hi-tech Industries

course title

Recommended by the Didactic Council for the Education Field of:

27.04.05 Innovatics

field of studies / speciality code and title

The course instruction is implemented within the professional education program of higher education:

Digital transformation in production management

higher education program profile / specialization title

1. THE PURPOSE OF MASTERING THE DISCIPLINE

The goals and objectives of the discipline are to gain knowledge, skills and experience in the field of managing the operations of science-intensive industries, characterizing the stages of the formation of competencies and ensuring the achievement of the planned results of mastering the educational program.

The purpose of mastering the discipline is to acquire knowledge, skills and abilities in the field under study, characterizing the stages of competence formation and ensuring the achievement of the planned results of mastering the educational program.

2. REQUIREMENTS FOR THE RESULTS OF MASTERING THE DISCIPLINE

Mastering the discipline is aimed at developing the following competencies (parts of competencies) among students:

Table 2.1. The list of competencies formed by students in the course of mastering the discipline (the results of mastering the discipline)

A code of a compe- tence	A competence	Indicators of achieving a competence
GPC-4	Able to develop criteria for evaluating management systems in the field of innovation based on modern mathematical methods, develop and implement man- agement decisions to improve their effectiveness	GPC-4.1. develops criteria for evaluat- ing the effectiveness of innovation management
GPC-7	Able to select reasonably and justify structural, algo- rithmic, technological and software solutions for man- aging innovative processes and projects; put them into practice in enterprise innovative systems, industrial and regional innovative systems	GPC-7.1. shows knowledge of techno- logical and software solutions for man- aging innovation processes
PC-2	Able to find (choose) optimal solutions when creating new science-intensive products, considering the re- quirements of quality, cost, deadlines, competitiveness and environmental safety	GPC-2.1 shows the knowledge of as- sessing the quality, cost and competi- tiveness of an innovative product or service
PC-3	Able to develop a plan and program for organizing in- novative activities of a research and production unit, to carry out a feasibility study of innovative projects and programs	PC-3.2 develops a plan and program for organizing innovation activities

3. THE PLACE OF DISCIPLINE IN THE STRUCTURE OF OP VO

The discipline refers to the mandatory part of the OP VO.

Within the higher education programme students also master other disciplines and internships that contribute to the achievement of the expected learning outcomes as results of the subject mastery.

Table 3.1. The list of components of the OP VO that contribute to the achievement of the planned results of the development of the discipline

Compe- tency code	Name of competence	Previous disciplines, practices	Subsequent disciplines, practices
GPC-4	Able to develop criteria for	-	Design of automated control systems; Organiza-
	evaluating management sys- tems in the field of innovation based on modern mathematical methods, develop and imple- ment management decisions to improve their effectiveness		tional and managerial practice; Preparation for passing and passing the state exam; Fulfillment, preparation for the defense procedure and defense of the final qualifying work
GPC-7	Able to select reasonably and justify structural, algorithmic, technological and software so- lutions for managing innova- tive processes and projects; put them into practice in enterprise	-	Design of automated control systems; Program- ming technologies for innovative industries; Digi- tal technologies for innovative production; Work- shop on the application of Earth remote sensing data and geographic information systems; Organi- zational and managerial practice; Preparation for

	innervative exetence industrial		pagging and pagging the state aromy Eviltilly get
	innovative systems, industrial		passing and passing the state exam; Fulfillment,
	and regional innovative sys-		preparation for the defense procedure and defense
	tems		of the final qualifying work
PC-2	Able to find (choose) optimal	Assessment	Strategic controlling in an innovative enterprise;
	solutions when creating new	of innovative-	Economics of high-tech industries; Marketing of
	science-intensive products,	investment	innovative products; Supply chain management in
	considering the requirements of	projects ef-	an innovative enterprise; Introductory practice;
	quality, cost, deadlines, com-	fectiveness /	Organizational and managerial practice (U); Or-
	petitiveness and environmental	International	ganizational and managerial practice (P) Under-
	safety	sci-tech co-	graduate practice; Preparation for passing and
		operation	passing the state exam; Implementation, prepara-
			tion for the defense procedure and defense of the
			final qualification work
PC-3	Able to develop a plan and	Programming	Big data processing; Operational Controlling at an
	program for organizing innova-	technologies	Innovative Enterprise; Digital technologies for in-
	tive activities of a research and	for innovative	novative production; Strategic controlling in an
	production unit, to carry out a	industries;	innovative enterprise; Introductory practice; Or-
	feasibility study of innovative	Digital tech-	ganizational and managerial practice (U); Organi-
	projects and programs	nologies for	zational and managerial practice (P); Undergradu-
		innovative	ate practice; Preparation for passing and passing
		production	the state exam; Implementation, preparation for
			the defense procedure and defense of the final
			qualification work

4. VOLUME OF DISCIPLINE AND TYPES OF EDUCATIONAL WORK

The total complexity of the discipline is 2 credit units.

Table 4.1. Types of educational work by periods of development of OP VO

Type of study work		Total, aca-	Semester
		demic hour	1
Contact work		36	36
Including:			
Lecture		18	18
Seminar classes		18	18
Independent work of the student		36	36
The total complexity of the discipline	Academic hours	72	72
The total complexity of the discipline	Credit Units	2	2

5. CONTENT OF THE DISCIPLINE

Table 5.1. The content of the discipline by type of educational work

Name of the discipline section	Contents of the section (topic)	Types of educational work
Section 1	Introduction to Operations Management. Operational function in	LEC, SM, IW
Fundamentals of Oper-	the organization. Enterprise Management System. Organization	
ational Management	management through business processes and procedures	
Section 2	The concept of "Six Sigma" (Six Sigma). Lean management and	LEC, SM, IW
Applied Operations	project management (Lean Manufacturing concept). Operating	
Management	strategies. High tech production management	

* LEC - lecture, SM - seminars; IW - independent work

6. LOGISTICS AND TECHNICAL SUPPORT OF THE DISCIPLINE

Table 6.1. Logistics of discipline

Types of Audi- torium	Audience equipment	Specialized educational / labora- tory equipment, software and materials for mastering the dis- cipline (if necessary)
Lecture	An auditorium for lecture-type classes, equipped with a set	-
	of specialized furniture; board (screen) and technical means	
	of multimedia presentations	
Seminar	An auditorium for conducting seminar-type classes, group	-
	and individual consultations, current control and intermedi-	
	ate certification, equipped with a set of specialized furniture	
	and technical means for multimedia presentations	
For independ-	An auditorium for independent work of students (can be	-
ent work of	used for seminars and consultations), equipped with a set of	
students	specialized furniture and computers with access to EIOS	

7. EDUCATIONAL-METHODOLOGICAL AND INFORMATION SUPPORT OF THE DISCIPLINE

Main literature:

1. Ключарев Г.А., Чурсина А.В. Наукоемкие производства для инновационной экономики: мнения экспертов / Вестник РУДН: Социология. 2021. № 21(1). С. 68-83.

2. Иванова Т.Б., Журавлева Е.А. New Approaches to Operations Management. (Новые подходы к операционному менеджменту): учебное пособие / М.: Изд-во РУДН. 2012. 91 с. ISBN 978-5-209-03658-6: 90.00

3. Веснин В.Р. Теория организации: учебник / М.: Проспект. 2016. 272 с. ISBN 978-5-392-20248-5

4. Ильдеменов С.В., Ильдеменов А.С., Лобов С.В. Операционный менеджмент: учебник / М.: Инфра-М. 2009. 337 с. ISBN 978-5-16-002265-9: 179.85

5. Чейз Р.Б., Эквилайн Н.Д., Якобс Р.Ф. Производственный и операционный менеджмент: перевод с англ. / 8-е изд. М.: Вильямс. 2003. 704 с. ISBN 5-8459-0157-Х: 256.40.

Additional literature:

1. Хаустов А.П., Редина М.М. Операционный менеджмент в нефтегазовом комплексе: учебное пособие / М.: Изд-во РУДН. 2008. 255 с. ISBN 978-5-209-03040-9: 0.00.

2. Кулябов Д.С., Королькова А.В. Введение в формальные методы описания бизнеспроцессов: учебное пособие / М.: Изд-во РУДН. 2008. 202 с.

3. Кокс Д., Джейкоб Д., Бергланд С. Новая цель: Как объединить бережливое производство, шесть сигм и теорию ограничений: перевод с англ. / М.: Манн, Иванов и Фербер. 2015. 430 с. Библиотека Сбербанка. Т. 32. ISBN 978-5-91657-447-0: 754.00

4. Шумаев В.А., Сазонов А.А. Управление логистическими потоками на основе японских технологий: методика применения инструментов Канбан / Менеджмент в России и за ру-бежом. 2014. № 1. С. 68-74.

5. The Six Sigma way: how GE, Motorola, and other top companies are honing their performance Peter S. Pande, Robert P. Neuman, Roland R. Cavanagh Copyright ©2000 by The McGraw-Hill Companies, Inc. ISBN 0-07-135806-4

The electronic library system (ELS) of RUDN University and third-party EBS, to which university students have access on the basis of concluded contracts:

- ELS RUDN http://lib.rudn.ru/MegaPro/Web
- ELS «University Library Online» <u>http://www.biblioclub.ru</u>
- ELS Юрайт <u>http://www.biblio-online.ru</u>
- ELS «Student Advisor» <u>www.studentlibrary.ru</u>
- ELS «Троицкий мост»

Databases and browsers:

- Electronic fund of legal and normative-technical documentation http://docs.cntd.ru/
- Yandex search https://www.yandex.ru/
- Google search https://www.google.ru/
- Abstract database SCOPUS http://www.elsevierscience.ru/products/scopus/

Educational and methodological materials for independent work of students in the development of the discipline*:

A course of lectures on the discipline.

* all educational and teaching materials for independent work of students are placed in accordance with the current procedure on the discipline page in the telecommunication educational in-formation system (TEIS) of RUDN

8. EVALUATION MATERIALS AND SCORE-RATING SYSTEM FOR ASSESSING THE LEVEL OF FORMATION OF COMPETENCES IN THE DISCIPLINE

Evaluation materials and a point-rating system for assessing the level of formation of competencies (parts of competencies) based on the results of mastering the discipline are presented in the Appendix to this Work Program of the discipline.

DEVELOPERS:

Associate professor, Department of Innovation Management in Industries

position, educational department

HEAD OF EDUCATIONAL DEPARTMENT:

Department of Innovation Management in Industries

educational department

HEAD OF EDUCATIONAL PROGRAM:

Department of Innovation Management in Industries

educational program

name and surname

O.E. Samusenko

name and surname

E.A. Kovaleva

name and surname