Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ястребов Олег AFederaluState Autonomous Educational Institution of Higher Education

Должность: Ректор PEOPLES' FRIENDSHIP UNIVERSITY OF RUSSIA

Дата подписания: 14.10.2025 17:39:02

NAMED AFTER PATRICE LUMUMBA

Уникальный программный ключ:

ca953a0120d891083f939673078ef1a989dae18a

RUDN University

Institute of Medicine

educational division (faculty/institute/academy) as higher education programme developer

COURSE SYLLABUS
Chemistry course title
course title
Recommended by the Didactic Council for the Education Field of:
31.05.03 Dentistry
field of studies / speciality code and title
The course instruction is implemented within the professional education programme of higher education:
Dentistry
higher education programme profile/specialisation title

1. COURSE GOAL(s)

The discipline "Chemistry" is included in the program of the specialty "Dentistry" in the direction of 31.05.03 "Dentistry" and is studied in the 1st semester of the 1st year. The discipline is implemented by the Department of Organic Chemistry. The discipline consists of 6 sections and 13 topics and is aimed at studying the chemical behavior of the main classes of organic compounds.

The goal of the course "Chemistry" is to form of systemic knowledge about the patterns of chemical behavior of the main classes of organic compounds necessary in the study of processes occurring in a living organism at the molecular level, and the main materials used in dental practice.

2. REQUIREMENTS FOR LEARNING OUTCOMES

Mastering the discipline "Chemistry" is aimed at developing the following competencies (parts of competencies) among students: GC-6, GPC-3.

Table 2.1. List of competences that students acquire during the course study

Competenc e code	Competence descriptor	Competence formation indicators (within this course)
GC-6	Ability to identify and implement the priorities of their own activities and ways to improve them based on self-assessment and lifelong learning	GC-6.1. Ability to evaluate and control their resources and their limits (personal, situational, temporary), uses them optimally for the successful completion of the assigned task
GPC-3	Ability to counter doping in sports and fight against it	GPC-3.2 To be able to understand the effect of the main types of doping on a person's physical qualities and their side effects.

3. COURSE IN HIGHER EDUCATION PROGRAMME STRUCTURE

The course refers to the core/<u>variable</u>/elective* component of (B1) block of the highere ducational programme curriculum.

* - Underline whatever applicable.

Within the higher education programme students also master other (modules) and / or internships that contribute to the achievement of the expected learning outcomes as results of the course study.

Table 3.1. The list of the higher education programme components/disciplines that contribute to the achievement of the expected learning outcomes as the course study results

Competenc e code	Competence descriptor	Previous courses/modules*	Subsequent courses/modules*
GC-6	Ability to identify and implement the priorities of their own activities and ways to improve them based on self-		Psychology; Pedagogy;

	assessment and lifelong learning	
GPC-3	Ability to counter doping in sports and fight against it	Physical culture; Applied physical education;

^{*} To be filled in according to the competence matrix of the higher education programme.

4. COURSE WORKLOAD AND ACADEMIC ACTIVITIES

The total workload of the course "Chemistry" is 3 credits (108 academic hours).

Table 4.1. Types of academic activities during the periods of higher education

programme mastering (full-time training)*

Type of academic activities		Total academic hours	Semesters/training modules 1
Classes (total) ac.h.		51	51
Including:		•	
Lectures (LC)		17	17
Lab work (LW)		34	34
Seminars (workshops/tutorials) (S)			
Self-studies		30	30
Evaluation and assessment (exam/passing/failing grade)		27	27
Total course workload	academic hours	108	108
	credits	3	3

^{*} To be filled in regarding the higher education programme correspondence training mode.

5. COURSE CONTENTS

Table 5.1. Course contents and academic activities types

Course module title	Course module contents (topics)	Academic activities types
Module 1. Introduction Hydrocarbons.	Topic 1.1. Goals for studying chemistry. Demonstration of the interdisciplinary nature of the discipline under study, formed on the scientific basis of organic chemistry and biology. Acquaintance with the basics of the structure and reactivity of organic compounds: the structure of the carbon atom, hybridization of orbitals, the concept of a covalent chemical bond, the properties of a chemical bond, the mutual influence of atoms in a molecule. Acquaintance with the classification and nomenclature of organic substances. Formation of skills in applying the rules of nomenclature.	LC

	Topic 1.2. Familiarization with the reactivity of hydrocarbons - alkanes, alkenes, alkynes, dienes and arenes. Radical substitution reactions in alkanes. Electrophilic addition reactions in alkenes, alkynes and dienes. Oxidation reactions. Acidity of terminal alkynes. polymerization reactions. Electrophilic substitution reactions in arenes. Reactivity of substituted benzenes. Formation of practical skills for detecting multiple bonds in the analyzed object. Practical demonstration of the	LC, LW
	chemical stability of alkanes and arenes. Topic 2.1. Familiarization with the chemical properties of alcohols (monatomic and polyatomic), phenols and thiols. The effect of hydrogen bonding on the physical properties of substances. Demonstration of acidic, nucleophilic properties of these classes of compounds (obtaining alcoholates, phenolates, thiolates, esters and ethers, sulfides, thioethers, sulfonium salts). Reactions of electrophilic aromatic substitution of phenols. The biological role of sulfonium salts and thioethers. The use of alcohols to obtain halogen derivatives, alkenes. Oxidation of alcohols and thiols, with emphasis on the biological significance of such processes. Formation of practical skills for detecting alcohols and phenols by chemical methods, obtaining esters, practical demonstration of the acidic properties of alcohols and phenols, demonstration of the dependence of the solubility of alcohols on the structure.	LC, LW
Module 2. Functional organic compounds	Topic 2.2. Familiarization with reactivity of aliphatic and aromatic amines, aminoalcohols and their biological significance, aminophenols. Demonstration of basic and nucleophilic properties of amines — formation of ammonium salts, quaternary ammonium salts, amides. Practical and biological significance of reactions amines with nitrous acid, carcinogenicity of nitrosoamines	LC, LW
	Topic 2.3. Familiarization with reactivity of aldehydes and ketones. Nucleophilic addition, reaction with nitrogen nucleophiles, oxidation, reduction (including enzymatic), reaction via α -position Formation of practical skills for the detection of aldehydes and ketones by chemical methods.	LC, LW

	Topic 2.4. Familiarization with reactivity of carboxylic acids. Preparation of carboxylic acid derivatives and study of their properties. Biological role of carboxylic acid derivatives on the example of lipids. Biologically important dicarboxylic acids: oxalic, malonic, succinic, glutaric and adipic acids, their behavior under the heating. Practical study of structures of fats and oils via hydrolysis and the use	LC, LW
	Topic 2.5. Familiarization with the chemical properties of hydroxy acids. The structure and chemical transformations of hydroxy acids, participants in metabolism - lactic, malic, citric acids. Demonstration of the basic concepts of stereochemistry – asymmetric (chiral) carbon atom, configuration, chirality, chiral center, enantiomers, optical activity, specific rotation, racemate. Formation of practical skills in depicting the structural formulas of chiral molecules on a plane using Fisher projection formulas and stereochemical wedge-shaped projections, as well as establishing the absolute and relative configuration in R-S and D-L systems. Biological activity of salicylic acid and its derivatives. Formation of practical skills for the detection of lactic acid by a chemical method. Application of previously acquired skills to study the structure and properties of salicylic acid, as well as its derivatives. Practical study of the chemical properties of tartaric acid and the establishment of the structure of citric acid.	LC, LW
	Topic 2.6. Familiarization with the chemical properties of aldehyde and keto acids. The structure and properties of keto acids, participants in metabolism - pyruvic, α-ketoglutaric, oxaloacetic acid. The formation of keto acids in the body from amino acids (cleavage-dehydration, oxidative deamination) and hydroxy acids.	LC
Module 3. Bio-polymers (proteins and carbohydrates) and their components.	Topic 3.1. Familiarization with the structure and chemical properties of proteinogenic amino acids. Optical isomerism of amino acids. Biologically important reactions: deamination, decarboxylation, (formation of colamine, histamine, tryptamine). Peptides and proteins. Hydrolysis of peptides. Chemical synthesis of dipeptides. The concept of complex proteins: glycoproteins, lipoproteins, nucleoproteins, phosphoproteins. A practical demonstration of the amphoteric character of amino acids. Formation of practical skills for the detection of amino acids and proteins by chemical methods	LC, LW

	Tonia 2.2 Equiliprization with the atmosphere and	LC, LW
	Topic 3.2. Familiarization with the structure and	LC, LW
	chemical properties of monosaccharides (glucose,	
	mannose, galactose, fructose, ribose, 2-	
	deoxyribose). Oxidation and reduction reactions,	
	formation of glycosides. Types of glycosides,	
	biological role. Acylation and alkylation reactions.	
	The practical significance of obtaining ozones.	
	Formation of a practical skill in depicting the	
	structural formulas of carbohydrates using Fisher's	
	1	
	projection formulas and Haworth's perspective	
	formulas. Stereochemistry of carbohydrates,	
	concept of mutarotation. Establishment of spatial	
	relationships between different types of	
	stereoisomers of monosaccharides - demonstration	
	of the concepts of enantiomer, diastereomer,	
	epimer, anomer. Familiarization with the chemical	
	properties and structure of disaccharides on the	
	example of maltose, lactose, cellobiose and sucrose.	
	Dependence of the properties of disaccharides on	
	1 -	
	the type of bond between monosaccharide residues.	
	Hydrolysis of disaccharides. Acquaintance with the	
	chemical properties and structure of	
	polysaccharides on the example of starch and	
	cellulose. The biological significance of	
	carbohydrates. Formation of practical skills in the	
	detection of reducing sugars, starch. Acquaintance	
	with the structure and biological functions of	
	heteropolysaccharides: chondroitin sulfate, heparin,	
	hyaluronic acid.	
	Topic 4.1. Familiarization with the main classes of	LC, LW
	*	LC, LW
	biologically significant heterocyclic compounds:	
	five-membered heterocycles with one (pyrrole,	
	thiophene, furan) and two heteroatoms (imidazole,	
	pyrazole); six-membered heterocycles with one and	
	two heteroatoms (pyridine, pyrimidine); fused	
	heterocycles (indole, purine). Reactivity of pyrrole,	
Module 4. Biologically	furan, thiophene. Reactions of electrophilic	
important heterocycles	substitution. The structure of porphin and heme.	
	Basic and nucleophilic properties of pyridine.	
	Electrophilic substitution reactions in pyridine.	
	Pyridine derivatives - nicotinic acid and its amide	
	(vitamin PP). Isonicotinic acid, pyridoxal.	
	Tautomerism of imidazole. Keto-enol and lactim-	
	lactam tautomerism on the example of uracil,	
	thymine, cytosine, guanine, uric acid. Practical	
	demonstration of the chemical properties of pyridine and uric acid. Practical study of the solubility of uric	
	acid salts.	

Module 5. Nucleic acids. Nucleotide coenzymes.	Topic 5.1 Familiarization with the structure of nucleic acid monomers. Nucleosides, hydrolysis. Nucleotides, hydrolysis. RNA and DNA. The primary structure of nucleic acids. Hydrolysis. Nucleotide coenzymes AMP, ADP, ATP, NAD+, NADP, NADH+ S-adenosylmethionine, acetyl-coenzyme, FAD, FADH ₂ , their transformations in the body - phosphorylation, oxidation, reduction, methylation, acylation.	LC
Module 6. Physico-chemistry of macromolecular compounds.	Topic 6.1 Polymers. The concept of medical polymers. Classification of polymers. Types of polymerization reactions. Polymers in medicine and dentistry. Polymers based on acrylic acid. Modern composite materials. Components of adhesive pastes. Other classes of dental materials: GIC, compomers, hyomers, ormokers.	LC

^{* -} to be filled in only for <u>full</u> -time training: *LC* - *lectures*; *LW* - *lab work*; *S* - *seminars*.

5. CLASSROOM EQUIPMENT AND TECHNOLOGY SUPPORT REQUIREMENTS

Table 6.1. Classroom equipment and technology support requirements

Type of academic activities	Classroom equipment	Specialised educational / laboratory equipment, software, and materials for course study (if necessary)
Lecture	An room for lecture-type classes, equipped with a set of specialized furniture; board (screen) and technical means of multimedia presentations.	a sat of specialized furnitures
Lab-work	Educational chemical laboratory for group laboratory-type classes, individual consultations, monitoring, intermediate certification, independent work	a set of specialized furniture; specialized equipment of the chemical laboratory: ventilation hood cabinet SHVP-4 (4 pcs.), rotary evaporator Hei-value digital G3B, rotary evaporator IKA, digital devices for determining the melting point SMP10; electronic laboratory scales AND EK-610, MK-M mantles of different sizes, drying cabinet PE-4610, magnetic stirrer MRHei-Mix S, magnetic stirrer with heating MRHei-Standart, refractometer, combined laboratory bath BKL, vacuum chemical station PC3001 VARIO-pro, circulating cooler Rotacool Mini, rotary vane vacuum pump RZ2.5, chemical membrane vacuum pump MZ2CNT, Steinel thermal blower, Spectroline EB-280C UV lamp, electronic vacuum controller with CVC3000 detect Vacuumbrand valve,

		chemical ware, refrigerator; there is wi-fi
Self-studies	An room for independent work of students (can be used for seminars and consultations), equipped with a set of specialized furniture and computers with access to the EIOS.	RUDN Coworking area Monday - Saturday 9.00 - 23.00

^{* -} the audience for independent work of students is indicated MANDATORY!

7. RESOURCES RECOMMENDED FOR COURSE STUDY

Main readings:

1. Zurabyan S.E.

Fundamentals of bioorganic: textbook for medical students / S.E. Zurabyan. -. - Moscow: GEOTAR-Media, 2019. - 304 p.: ill.. - ISBN 978-5-9704-4990-5. http://lib.rudn.ru/MegaPro/UserEntry?Action=Rudn FindDoc&id=464603&idb=0

- 2. Tyukavkin, N. A. Organic chemistry: textbook / Tyukavkin N. A. Москва: ГЭОТАР-Медиа, 2022. 592 с. ISBN 978-5-9704-6595-0. https://lib.rudn.ru:443/MegaPro/UserEntry?Action=Link_FindDoc&id=508876&idb=0
- L. G. Voskressenky, A. V. Listratova, A. V. Varlamov. "Bioorganic Chemistry for Medicine Students. Lectures", Moscow, Peoples' Friendship University of Russia, 2015
 Additional readings:
- 1. Reinhard Bruckner "Advanced Organic Chemistry" Academic Press.
- 2. Francis A. Carey, Richard J. Sundberg "Advanced Organic Chemistry" Springer, 2008
- 3. Organic Chemistry with a Biological Emphasis, Volume I, Timothy Soderberg https://digitalcommons.morris.umn.edu/chem-facpubs/1/
- 4. Organic Chemistry with a Biological Emphasis, Volume II, Timothy Soderberg
- 5. https://digitalcommons.morris.umn.edu/chem_facpubs/2/

Internet sources:

- 1. Electronic libraries (EL) of RUDN University and other institutions, to which university students have access on the basis of concluded agreements:
 - RUDN Electronic Library System (RUDN ELS) http://lib.rudn.ru/MegaPro/Web
 - EL "University Library Online" http://www.biblioclub.ru
 - EL "Yurayt" http://www.biblio-online.ru
 - EL "Student Consultant" www.studentlibrary.ru
 - EL "Lan" http://e.lanbook.com/

- EL "Trinity Bridge"

DEVELOPERS:

- 2. Databases and search engines:
- electronic foundation of legal and normative-technical documentation http://docs.entd.ru/
 - Yandex search engine https://www.yandex.ru/
 - Google search engine https://www.google.ru/
 - Scopus abstract database http://www.elsevierscience.ru/products/scopus/

Learning toolkits for self-studies in the RUDN LMS TUIS *:

- 1. The set of lectures on the course « Chemistry».
- 2. Guidelines for laboratory works on the discipline « Chemistry»
- * all educational and methodological materials for independent work of students are placed in accordance with the current procedure on the page of the discipline in TUIS!

8. ASSESSMENT TOOLKIT AND GRADING SYSTEM* FOR EVALUATIONOF STUDENTS' COMPETENCES LEVEL UPON COURSE COMPLETION

Evaluation materials and point-rating system* for assessing the level of competence formation (GC-6, GPC-3) based on the results of mastering the discipline «Chemistry» are presented in the Appendix to this Work Program of the discipline.

* The assessment toolkit and the grading system are formed on the basis of the requirements of the relevant local normative act of RUDN University (regulations / order).

Assistant Professor, Organic Chemistry Department		Listratova A. V.	
Position, Department HEAD OF THE DEPARTMENT:	Signature	Full name	
Organic Chemistry Department		Voskressensky L. G.	
Name of Department	Signature	Full name	
HEAD OF THE PROGRAMME: Deputy Director of IM in the		Razumova S.N.	
direction of "Dentistry"		Kazumova S.N.	
Position Department	Signature	Full name	