Математик РУДН назвал основные проблемы автопилотов при обнаружении пешеходов

Математик РУДН назвал основные проблемы автопилотов при обнаружении пешеходов

Математик РУДН с коллегами из Египта, Саудовской Аравии и Китая собрал последние исследования в области глубокого обучения по обнаружению пешеходов для транспорта с автопилотом. Авторы назвали слабые места и наметили цели для дальнейших исследований.

Автомобили и другие транспортные средства с автопилотом уже начали входить в повседневную жизнь. Однако для широкого распространения этой технологии необходимо улучшить несколько фундаментальных характеристик. Одна из них — обнаружение пешеходов. Для этого используют технологии глубокого обучения — искусственные нейронные сети. Математики РУДН с коллегами из Египта, Саудовской Аравии и Китая проанализировали последние исследования в этом направлении.

«В последние годы автономные транспортные средства становятся все более популярными. Они повышают безопасность и удобство, снижают расход топлива, сокращают пробки на дорогах и несчастные случаи, экономят затраты и повышают надежность. Однако прежде чем они будут полностью развернуты на дорогах, нужно решить несколько первостепенных задач. Точное обнаружение пешеходов — очень сложная задача. Технологии глубокого обучения демонстрируют большой потенциал для ее решения. Мы составили обзор проблем обнаружения пешеходов и последних достижений в их решении с помощью методов глубокого обучения», — Аммар Мутханна, кандидат технических наук, младший научный сотрудник научного центра моделирования высокотехнологичных систем и инфокоммуникаций РУДН.

Математики обратили внимание на три главных проблемы, которые возникают при обнаружении пешеходов с помощью глубокого обучения — препятствия, низкое качество изображений, многоспектральные изображения. Последнее — это серия изображений одного и того же объекта, но полученных в разных диапазонах. Например, обычное оптическое изображение и в инфракрасном диапазоне. Предполагается, что данные получаются с лидаров и камер, откуда поступают модель глубинного обучения. Ученые рассмотрели разные подходы, которые используют для построения таких моделей, и назвали их преимущества и недостатки.

Математики РУДН обратили внимание, что разные методы построения дают не только разные результаты, но и разное время и точность работы. Например, современные методы дают более точный ответ, но это занимает больше времени. Поэтому, заключили ученые, важно реализовать такой подход, который сможет найти баланс между точностью и скоростью. Причем такой, который будет соответствовать практическим целям. Также математики обратили внимание, что доступные для обучения данные недостаточно разнородны и могут не давать полной картины. Например, изображения в оптическом диапазоне лучше работают днем, а в инфракрасном — в темное время суток. Чтобы алгоритм был эффективным круглосуточно, необходимы большие наборы разнородных данных для обучения.

Среди целей для будущих исследований в этом направления математики РУДН назвали обнаружение маленьких и загороженных объектов, работу в плохом освещении, комбинирование 3D и 2D подходов. Также исследователи предлагают сделать акцент на улучшении скорости и точности.

Результаты опубликованы в журнале Electronics.

Теги Приоритет-2030
Новости
Все новости
Наука
29 октября
«Наука Спасёт Общество!»: председатель НСО института иностранных языков РУДН — об успехах организации и планах на будущее

Научное студенческое сообщество института иностранных языков РУДН в этом году заняло второе место на конкурсе среди вузовских НСО. И не спроста — научные кружки ИИЯ регулярно побеждают в различных конкурсах, а активисты общества организовывают для студентов встречи с представителями их будущих профессий, разговорные языковые клубы, экскурсии и множество других полезных мероприятий.

Наука
16 октября
Студентка РУДН победила в секции «Биотехнология» на российском форуме OpenBio

В конце сентября прошёл XII Российский форум биотехнологий OpenBio. Это крупное мероприятие, которое объединяет представителей науки, бизнеса и государства для решения задач по обеспечению устойчивого развития биотехнологической отрасли и экономики страны. В его программе были экспертные дискуссии, круглые столы, выступления лидеров отрасли, мастер-классы, презентации технологий и оборудования.

Наука
14 октября
Стартовал приём заявок на шестую акселерационную программу «GreenTech Устойчивое развитие»

Фонд «Сколково» (Группа ВЭБ.РФ) совместно с Министерством природных ресурсов и экологии РФ и ведущими промышленными компаниями страны объявил о старте шестого цикла крупнейшей в России программы развития экосистемы поставщиков для промышленности «GreenTech Устойчивое развитие». Приём заявок от разработчиков технологических решений продлится до 20 октября 2025 года.