Математики РУДН и Свободного университета Берлина предложили новый способ использования нейронных сетей для работы с зашумленными данными больших размерностей
Восстановление распределения вероятностей наблюдаемых данных искусственными нейронными сетями — это наиболее важная часть машинного обучения. Распределение вероятностей не только позволяет прогнозировать поведение исследуемой системы, но и количественно оценить неопределенность, с которой делаются прогнозы. Главная трудность заключается в том, что, как правило, наблюдаются лишь сами данные, но их вероятностные распределения в точном виде не доступны. Для решения этой проблемы используют байесовские и близкие к ним приближенные методы. Но их использование увеличивает сложность нейронной сети и соответственно ее обучения.
Математики РУДН и Свободного университета г. Берлина использовали детерминированные веса для нейронных сетей, а выходами сетей закодировали распределения латентных переменных для искомого маргинального (частного) распределения. Анализ динамики обучения таких сетей позволил им получить формулу, которая корректно оценивает дисперсию распределения наблюдаемых данных, несмотря на наличие в данных выбросов. Предложенную модель проверили на разных данных: синтетических и реальных. Новый метод позволяет восстанавливать распределения вероятностей с более высокой точностью по сравнению с другими современными методами. Точность оценивалась по методу AUC (area under the curve — это площадь под графиком, который позволяет оценить среднеквадратичную ошибку предсказаний в зависимости от размера выборки, оцененной сетью как «надежная»; чем выше оценка AUC, тем качественнее предсказания).
Статья опубликована в журнале Artificial Intelligence.
Кандидат биологических наук, доцент института экологии РУДН Всеволод Павшинцев разрабатывает инновационную методику, которая позволяет оценивать состояние пресных водоёмов с помощью рыбок данио-рерио и искусственного интеллекта. Проект, поддержанный грантом университета, призван перейти от простого химического анализа воды к пониманию того, как загрязнители воздействуют на живые организмы.
Доцент кафедры наноэлектроники и микросистемной техники РУДН Екатерина Гостева возглавляет междисциплинарный проект по разработке технологии наноструктурирования поверхности имплантатов. Её цель — сделать приживление имплантатов быстрым, надёжным и доступным для самых разных групп пациентов.
В институте экологии РУДН реализуется масштабный междисциплинарный проект в области экологической химии и материаловедения. Учёные работают над созданием высокоэффективных сорбентов на основе природных материалов для обезвреживания опасных загрязнителей окружающей среды.
Проект объединяет фундаментальные исследования на стыке химии, материаловедения и экологии и соответствует стратегическим целям развития науки и технологий Российской Федерации.