Необоснованные обобщения и ложные выводы: учёные РУДН выявили «галлюцинации» ИИ при диагностике ментальных расстройств

Необоснованные обобщения и ложные выводы: учёные РУДН выявили «галлюцинации» ИИ при диагностике ментальных расстройств

Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.

«Наше исследование — это важный шаг на пути к доверенному ИИ в медицине. Мы не просто указываем на недостатки инструментов ИИ, а предлагаем подходы к их преодолению. Ключевая задача сегодня — не слепое доверие к алгоритмам, а их интеграция в работу врача в качестве проверенного и понятного инструмента поддержки принятия решений. Безопасность пациентов и понимание ограничений технологии — наш абсолютный приоритет», — отметил Антон Поддубский, декан факультета искусственного интеллекта РУДН.

Главная ценность исследования — детальное сравнение существующих больших языковых моделей (LLM), а также методов их использования и дообучения для задач выявления депрессии и тревожности по тексту, и анализ ошибок и «галлюцинаций» ИИ в этих задачах с привлечением экспертов в области психологии. Работа учёных РУДН получила признание и была представлена на высокорейтинговой международной конференции Empirical Methods in Natural Language Processing (EMNLP). Мы поговорили с авторами статьи и узнали, как появилась идея работы, какие «галлюцинации» ИИ были выявлены и каковы перспективы развития исследования.

Как возникла идея исследования на эту тему и почему она актуальна и важна?

В последние годы растёт интерес к диагностике психических состояний по тексту и к использованию ИИ в этой сфере, а также к применению LLM в медицине в целом. При этом большинство работ опираются на англоязычные данные и ML-модели; для русского языка комплексных сравнений до сих пор не было. Это подтолкнуло нас к исследованию LLM и других моделей машинного обучения для выявления депрессии и тревожности по тексту. Мы сравнили различные модели для обеих задач и показали, какие из них лучше работают в каждом случае. Кроме того, мы провели дополнительные эксперименты, чтобы оценить качество генерации LLM с точки зрения экспертов-психологов. Выяснилось, что на текущем этапе LLM дают ответы невысокого качества. В частности, в одном из экспериментов мы с помощью LLM не только определяли наличие или отсутствие депрессии у автора текста, но и генерировали объяснение того, почему модель пришла к соответствующему выводу. Именно в этом эксперименте мы установили, что объяснения современных моделей содержат большое количество ошибок с экспертной точки зрения.

В чём главная опасность таких ошибок?

Опасность заключается в том, что LLM могут выдавать необоснованные или ложные выводы («галлюцинации»), которые выглядят правдоподобно для конечного пользователя. Такие ошибки трудно выявить без помощи эксперта, но при этом они могут привести к неверной интерпретации признаков депрессии.

Какие причины ошибок ИИ вы выявили? В чём особенность разговоров о психическом здоровье, которая так «сбивает с толку» даже самые продвинутые языковые модели?

Клинические психологи анализировали ответы LLM и отмечали в них ошибки с экспертной точки зрения. Так мы выделили шесть основных типов ошибок: тавтология, необоснованные обобщения, ложные выводы, конфабуляции, искажение медицинских представлений о депрессии и неполное перечисление её признаков. Стоит отметить, что с точки зрения машинного обучения все эти ошибки могут описываться как «галлюцинации», однако в задачах, связанных с психологией, нужна более точная категоризация. Особенность текстов, используемых для выявления депрессии, связана со сложностью их интерпретации. Люди нередко описывают своё состояние косвенно, с помощью метафор, и текст не всегда напрямую отражает признаки психических нарушений. Кроме того, сама задача выявления депрессии по тексту сложна для неспециализированных моделей, поскольку они в большинстве своём не обучались на психологических или медицинских данных.

Каковы перспективы развития этого исследования?

Следующим шагом может стать специализированное дообучение LLM на больших массивах данных для задач выявления депрессии и тревожности. В текущих экспериментах использовалось относительно небольшое количество данных, что могло ограничить итоговое качество моделей.

Новости
Все новости
Наука
29 января
«Живой тест воды»: учёный РУДН создаёт новую систему экомониторинга с помощью ИИ и рыбок Danio rerio

Кандидат биологических наук, доцент института экологии РУДН Всеволод Павшинцев разрабатывает инновационную методику, которая позволяет оценивать состояние пресных водоёмов с помощью рыбок данио-рерио и искусственного интеллекта. Проект, поддержанный грантом университета, призван перейти от простого химического анализа воды к пониманию того, как загрязнители воздействуют на живые организмы.

Наука
29 января
«Идеальный» дентальный имплантат: доцент инженерной академии РУДН рассказала о своей разработке

Доцент кафедры наноэлектроники и микросистемной техники РУДН Екатерина Гостева возглавляет междисциплинарный проект по разработке технологии наноструктурирования поверхности имплантатов. Её цель — сделать приживление имплантатов быстрым, надёжным и доступным для самых разных групп пациентов.

Наука
28 января
От молекул к экосистемам: учёные-экологи РУДН создают высокоэффективные сорбенты на основе природных материалов

В институте экологии РУДН реализуется масштабный междисциплинарный проект в области экологической химии и материаловедения. Учёные работают над созданием высокоэффективных сорбентов на основе природных материалов для обезвреживания опасных загрязнителей окружающей среды.

Проект объединяет фундаментальные исследования на стыке химии, материаловедения и экологии и соответствует стратегическим целям развития науки и технологий Российской Федерации.