Химик РУДН разработал новый катализатор для «зеленого» биотоплива
Химик РУДН разработал новый катализатор для «зеленого» биотоплива
Химик РУДН синтезировал катализатор для производства гамма-валеролактона — энергоемкого «зеленого» биотоплива. Катализатор на основе двуокиси циркония и цеолита показал высокую эффективность в превращении отхода древесного растительного сырья — метил левулината — до гамма-валеролактона.

Одним из источников биотоплива может служить лигноцеллюлоза, которую получают из отходов сельского хозяйства и переработки древесины. Из лигноцеллюлозной биомассы вначале выделяют метил левулинат, который затем в присутствии катализаторов на основе благородных металлов превращается в гамма-валеролактон. Гамма-валеролактон обладает значительным потенциалом высококалорийного жидкого биотоплива, которое совместимо с традиционным нефтяным топливом, то есть может использоваться в современных транспортных средствах без модификации двигателей. Дороговизна катализаторов, содержащих платину, палладий и рутений, — одно из главных препятствий на пути массового производства этого дешевого биотоплива. Поэтому химики пытаются создать катализаторы на основе доступных металлов.

Рафаэль Луке, сотрудник научного центра Объединённого института химических исследований РУДН, получил новый катализатор из легкодоступных веществ — цеолита и диоксида циркония. Цирконий встречается в природе гораздо чаще благородных металлов, и его добыча проще. Для сравнения: добыча циркония — 300 000 тонн/год, рутения — 20 тонн/год. В качестве носителя катализатора химики выбрали цеолиты, которые состоят из кремния, алюминия и кислорода. Цеолиты — привлекательные материалы для получения нанокомпозиционных материалов и катализаторов за счет своей открытой каркасно-полостной структуры с различными кислотными центрами. Путем механохимического смешения соли циркония и цеолита с последующей термической обработкой химикам РУДН удалось получить катализатор с наночастицами диоксида циркония.

Химики РУДН протестировали новый катализатор в реакции гидрирования метил левулината в проточном реакторе в среде протонного растворителя, без использования небезопасного газообразного водорода. В эксперименте катализатор показал высокую активность и селективность в целевой реакции образования гамма-валеролактона. Авторам также удалось выявить, что природа цеолита и наночастицы оксида циркония играют разную роль в механизме гидрирования. Кислотные центры цеолита способствуют образованию побочных продуктов, в то время как на оксиде циркония протекают процессы образования гамма-валеролактона. Таким образом, исследование носит не только прикладной, но и фундаментальный характер. Также авторы статьи подчеркивают, что именно проточный реактор позволяет достичь высокого выхода продукта. Кроме того, в нем проще контролировать и управлять величинами конверсии и селективности. Селективность в ходе проведенного химиками синтеза достигла 100 % при конверсии в 50 %.

В перспективе гидрирование метил левулината в среде протонного растворителя с использованием недорогих цирконий-цеолитных катализаторов может стать основой технологических процессов превращения лигноцеллюлозной биомассы в биотопливо второго поколения, отмечают авторы.

Статья в журнале Molecular Catalysis.

Новости
Все новости
Наука
14 октября
Телемедицина: эффективная диагностика или высокий риск врачебной ошибки?

Валерий Cтоляр, к.б.н., завкафедрой медицинской информатики и телемедицины РУДН, Лауреат Премии Правительства РФ и Премии им. В.И. Бураковского — родоначальник телемедицины в России. Рассказывает, как использовать возможности сервисов без риска для здоровья.

Наука
13 октября
Химик РУДН нашел способ улучшить солнечные элементы

Химик РУДН обнаружил четыре новых стабильных соединения, которые можно получить в реакции йода с йодидом метиламмония — использование этих веществ позволят производить перовскитные солнечные батареи без токсичных реактивов, и избавит производителей от побочных продуктов.

Наука
08 октября
Биофизик РУДН смоделировал поведение элементов микротрубочек клетки для химического воздействия на их рост и распад

Биофизик РУДН смоделировал молекулярную динамику роста важнейших элементов жизнедеятельности клетки — микротрубочек. Исследователи построили модель взаимодействия субъединиц микротрубочек с учётом их внутренних и внешних связей. Результаты позволяют сформировать более полную модель динамической нестабильности микротрубочек. Это позволит подобрать химические агенты для терапии некоторых заболеваний, в том числе новообразований и нейродегенеративных патологий.