Научный центр нелинейных задач математической физики

Руководитель:

Шишков Андрей Евгеньевич

Доктор физико-математических наук
профессор

Структурное подразделение: Математический институт им. С.М. Никольского.

Главные научные направления
  • Асимптотическое поведение решений нелинейных граничных задач при больших временах.
  • Разрушение за конечное время решений начально-краевых задач для различных нелинейных нестационарных уравнений математической физики. Структура сингулярностей решений стационарных и эволюционных нелинейных уравнений с частными производными.
  • Усреднение краевых задач для нелинейных эллиптических и параболических уравнений.
Достижения Все достижения

Асимптотическое поведение решений нелинейных граничных задач при больших временах. Установлены условия существования и отсутствия глобальных решений начально-краевых задач для нелинейных параболических уравнений с нелокальными граничными данными. Доказана орбитальная устойчивость одного класса солитонных решений обобщенного уравнения Кавахары. Установлены точные условия стабилизации решений нелинейных эволюционных уравнений высокого порядка. Для неравенств высокого порядка с нелинейностью типа Эмдена- Фаулера найдены точные условия отсутствия целых нетривиальных решений. Для таких неравенств с нелинейностью общего вида доказаны аналоги известной для второго порядка теоремы Келлера – Оссермана.

Разрушение решений нелинейных уравнений, сингулярности, режимы с обострениями.
Рассмотрены модельные нелинейные эволюционные уравнений третьего и четвертого порядков, описывающие волны и квазистационарные процессы в плазме и в полупроводниках соответственно. 
Доказано существование классических решений задачи Коши и получены достаточные условия их разрушения за конечное время. Получены также оценки сверху на время разрушения.

Изучается поведение решений квазилинейных параболических уравнений в окрестности времени сингулярного обострения граничных данных. Установлены точные оценки сверху финального профиля решения. Установлен критерий существования суперсингулярных неотрицательных решений с точечной особенностью для уравнений структуры нестационарной диффузии - нелинейной абсорбции с вырождающимся абсорбционным потенциалом. Исследуется также эволюции «больших» решений для таких уравнений.  Установлены точные условия распространения сингулярности решений из границы области на многообразие вырождения абсорбционного потенциала.