Физики РУДН определили оптимальные условия удержания высокоэнергичных плазменных сгустков в магнитной ловушке пробочного типа

Физики РУДН определили оптимальные условия удержания высокоэнергичных плазменных сгустков в магнитной ловушке пробочного типа

Физики РУДН описали условия наиболее эффективной работы магнитной ловушки типа пробкотрон в авторезонансном режиме. Эти данные помогут лучше понять плазменные процессы в магнитных ловушках.

Плазма— это четвертое агрегатное состояние, не похожее по физическим свойствам на другие. Исследования плазменных состояний и явлений — одно из наиболее популярных направлений современной физики. Одно из потенциальных применений плазмы в будущем — управляемый термоядерный синтез. Для реализации синтеза ядер необходимо создание условий при которых высокотемпературная плазма определенной плотности удерживается в ограниченном объеме в течение времени необходимого для осуществления достаточного числа реакций. Удержание вещества с температурой несколько миллионов градусов требует применения оригинальных методов организации ограниченной области пространства, в котором локализована такая плазма. Применение обычных материалов бесперспективно ввиду малой температурной и радиационной стойкости. Для удержания вещества в таком состоянии применяются магнитные системы — магнитные ловушки со специфической топологией магнитного поля, ограничивающей область движения заряженных частиц. Наиболее перспективными на сегодняшний день с точки зрения УТС является семейство замкнутых тороидальных магнитных конфигураций. В основу строящегося международного проекта ИТЭР положена концепция советских ученых — Токамак. Наиболее простейщей конфигурацией для лабораторной плазмы является линейная ловушка с двумя областями усиления магнитного поля — «магнитными зеркалами» (поробкотрон). В лаборатории физики плазмы ИФИТ исследуется оригинальный способ генерации плазменных сгустков с энергичной электронной компонентой масштаба 0.5 МэВ в условиях гирорезонансного взаимодействия, предложенного и реализованного ранее.

«Ранее мы описали получение плазмы в условиях авторезонансного взаимодействия заряженных частиц с электромагнитными волнами — циклотронный авторезонанс . Такой подход реализуемый в условиях пробоктрона приводит к формированию долгоживущих сгустков плазмы. Это заполненное ионами облако электронов, со средней энергией порядка нескольких сотен кэВ, которые удерживается внешним магнитостатическим полем», — кандидат физико-математических наук Виктор Андреев, заместитель директора по научной работе Института физических исследований и технологий РУДН.

Экспериментальная установка оригинальной разработки представляет собой осесимметричную систему в которой СВЧ- резонатор помещен в магнитостатическое поле пробочной конфигурации и импульсное магнитное поле обеспечивающее поддержание авторезонансного режима работы. Экспериментальный стенд оснащен различными диагностическими системами, которые обеспечивают изучение процессов, имеющих место в условия поддержания авторезонансного режима генерации такой плазмы. В экспериментальных исследованиях изучаются радиационные потери такой плазмы в различных спектральных диапазонах — спектрометры оптический, радиочастотный и рентгеновский.

Физикам РУДН удалось установить оптимальное время между СВЧ-импульсами и изменением магнитного поля, которое обеспечивает максимальную эффективность ловушки (200 мкс). Определены объем, который занимает плазменный сгусток, а также количество заряженных электронов в генерируемых сгустках — около 50 миллиардов частиц с энергией порядка 350 кэВ в примерно 80 кубических сантиметрах.

«Полученные результаты и наблюдаемые закономерности генерации и удержания сгустков плазмы с горячей электронной компонентой в авторезонансном режиме позволяют перейти к более подробным экспериментальным и численным исследованиям основных плазменных процессов, в которых особенное внимание будет уделено увеличению плотности сгустков плазмы и их накопления», — кандидат физико-математических наук Виктор Андреев, заместитель директора по научной работе Института физических исследований и технологий РУДН.

Результаты опубликованы в журнале Physics of Plasmas.

Новости
Все новости
Наука
17 июня
ЦУР – стратегический ориентир для ученых РУДН

В мастерской управления «Сенеж» завершился четвертый модуль программы развития кадрового управленческого резерва в области науки, технологий и высшего образования. Единственный участник от РУДН — Александр Леонидович Чупин, кандидат экономических наук, заместитель декана по научной работе экономического факультета. Основная цель программы — обучение управленческим навыкам молодых ученых, которые уже добились значительных успехов в научной и образовательной деятельности.

Наука
10 июня
Учёный РУДН: Африка делает ставку на малые модульные реакторы для решения энергетических проблем

По данным Международного энергетического агентства (МЭА), потребление электроэнергии в Африке за последние два года (2020–2022) выросло более чем на 100%. Однако 74,9% этой энергии по-прежнему производится за счет сжигания органического топлива — природного газа, угля и нефти. При этом уровень электрификации на континенте остается крайне низким — всего 24%, тогда как в других развивающихся странах он достигает 40%. Даже в подключенных к сети районах электроснабжение часто ненадежно: промышленные предприятия теряют энергию в среднем 56 дней в году.

Наука
9 июня
Исследование ученых РУДН взяло «серебро» на конгрессе по фармакотерапии

В Москве прошёл III Российский конгресс «Безопасность фармакотерапии 360°: Noli nocere!» Мероприятие посвящено актуальным вопросам лекарственной безопасности, фармаконадзора и персонализированной медицины.