Физики РУДН упростили теорию Эйнштейна — Лавлока для черных дыр
Общая теория относительности Эйнштейна предсказала, что во Вселенной существуют объекты с настолько высокой плотностью, что они «притягивают» к себе даже свет, — черные дыры. Существует множество математических моделей, которые описывают черные дыры, одна из них — уточнение общей теории относительности путем введения квантовых поправок, теория Эйнштейна — Лавлока. В ней черная дыра описывается с помощью суммы бесконечного числа слагаемых. Исследователи смогли показать, что небольшого числа слагаемых достаточно, чтобы описать наблюдаемые эффекты вблизи черной дыры, — остальные компоненты уравнения вносят ничтожно малый вклад, которым можно пренебречь. Это значительно упростит расчеты и поможет исследователям в изучении черных дыр в теориях с квантовыми поправками.
Теория Эйнштейна предполагает, что тяжелые объекты искривляют пространство-время — четырехмерную конструкцию, которая включает в себя три пространственных измерения и одно временное. Лавлок в 1971 году обобщил эту теорию для любого количества измерений. Уравнение Эйнштейна — Лавлока — это бесконечная сумма: первые два слагаемых — это «обычное» эйнштейновское представление, а каждое последующее — все более детальное уточнение кривизны пространства-времени.
Каждое слагаемое в уравнении Эйнштейна — Лавлока умножается на число — так называемую константу связи. Ученые показали, что, если ограничиваться положительными значениями констант связи, поправки высокой кривизны можно «отсекать». Дело в том, что для каждой константы связи можно выделить критическое значение — если константа его достигает, то черная дыра оказывается нестабильной, то есть не может существовать. Математически такое представление возможно, но физически — не имеет смысла. Чем больше слагаемых, тем меньше становится критическое значение для констант. Таким образом, стабильность черной дыры — то есть возможность ее физического существования — можно использовать в качестве критерия «отсекания» ненужных слагаемых.
«С добавлением каждого слагаемого Лавлока критическое значение констант связи всегда будет уменьшаться. Это важное наблюдение, поскольку оно означает, что для оценки максимально возможной поправки к геометрии черной дыры, вызванной очередным слагаемым Лавлока, можно считать остальные слагаемые ничтожно малыми», — говорит соавтор работы Роман Конопля, научный сотрудник Учебно-научного института гравитации и космологии РУДН.
Физики показали, что основные наблюдаемые величины — например, радиус тени черной дыры — практически не изменяются при включении поправок Лавлока дальше четвертого слагаемого. Эти данные будет полезны не только для изучения процессов в черных дырах, но и для проверки теоретических предсказаний, связанных с возможными обобщениями теории Эйнштейна.
Работа опубликована в журнале Physics Letters B.
Статья в Indicator.ru
Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.
Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.
В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.