Химики РУДН нашли способ целенаправленно получать катализаторы на основе двух разных металлов с уникальной эффективностью
Металлический кластер — объединение нескольких атомов металлов, между которыми есть существенное взаимодействие. Кластеры, которые состоят из атомов разных металлов, называются гетерометаллическими — они могут быть катализаторами в органических реакциях, например, в фармацевтике и производстве полимеров. Однако создавать такие кластеры непросто. Химики РУДН и ИНЭОС описали, как можно эффективно получать гетерометаллические кластеры из «обычного» металлического кластера, состоящего из трёх атомов родия.
«Родий хорошо известен как каталитический металл. Есть множество органических процессов, которые катализируются металлическими кластерами на основе родия. Однако большинство подходов для синтеза гетерометаллических кластеров являются случайными и дают низкий выход желаемого продукта. Нам удалось создать гетерометаллические кластеры из родиевого с высокой эффективностью реакции», — Ольга Чусова, PhD, сотрудник Научного центр «Кристаллохимия и структурный анализ» РУДН.
Химики использовали кластер из трех атомов родия, которые соединяются между собой и образуют треугольник. К вершинам и сторонам этого треугольника прикреплены лиганды — молекулы, которые диктуют поведение атомам родия. Детально продуманный выбор лигандов как в исходном кластере, так и в реагентах позволил химикам создать новые гетерометаллические кластеры. Дело в том, что соединения чувствуют себя с одними лигандами лучше, чем с другими. В данном случае добавления в качестве реагента, в котором есть атом другого металла с недостатком электронов, — металлоэлектрофила — позволил создать новый комплекс, который состоит из атомов разных металлов — гетерометаллический кластер. Вместо треугольника образуется тетраэдр — в его вершинах три атома родия и еще один атом золота или кобальта.
Такой механизм обеспечил почти стопроцентную эффективность реакции — то есть реальное количество полученного гетерометаллического кластера почти совпадало с рассчитанным теоретически (81% от теоретического значения для кластера с кобальтом и 93% — с золотом). Примечательно, что он сработал одинаково хорошо несмотря на то, что металлоэлектрофилы с золотом и с кобальтом имеют разную структуру.
«Хотя металлоэлектрофилы имеют различную электронную структуру, они оба реагируют с треугольным родиевым кластером и образуют стабильные тетраэдрические кластеры. Это явление связано с уникальной структурой исходного родиевого кластера, поскольку он может предоставлять различное количество электронов в зависимости от потребностей металлоэлектрофила. В данном случае производному золота требовалось для достижения мечты только два электрона, а производному кобальта целых шесть», — Ольга Чусова, PhD, сотрудник Научного центр «Кристаллохимия и структурный анализ» РУДН.
Открытие повысит эффективность синтеза катализаторов на основе гетерометаллических кластеров для химической промышленности.
Исследование опубликовано в журнале Journal of Organometallic Chemistry.
Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.
Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.
В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.