Химик РУДН создал водоотталкивающую биопленку толщиной в 1 молекулу

Химик РУДН создал водоотталкивающую биопленку толщиной в 1 молекулу

Химик РУДН создал двумерную нанопленку из органического вещества каликсарена. Материал может применяться в электронике для защитных покрытий от влаги и ржавчины, биомембран и молекулярных фильтров. Химик также описал, как усилить прочность таких пленок с помощью ультрафиолета.

Каликсарены — крупные органические молекулы, они состоят из нескольких «ободов» и строением напоминают чашу. Верхний обод чаши гидрофильный, то есть хорошо смачивается водой. Нижний обод — гидрофобный, то есть отталкивает воду. Сами по себе каликсарены используются в качестве вспомогательных веществ в химической промышленности, например, для синтеза полимеров этилена или пропилена. Химик РУДН предложил использовать каликсарены по-новому — он создал из них тонкие пленки толщиной в одну молекулу, которые можно применять, например, как водооталкивающие покрытия.

«Такие двумерные органические пленки могут применяться для создания защитных гидрофобных или антикоррозионных покрытий, в органической электронике и разработке молекулярных фильтров», — кандидат химических наук Алексей Клецков, научный сотрудник Объединенного института химических исследований РУДН.

Для сборки тонкой пленки из одиночных молекул использовали метод Ленгмюра-Блоджетт. Он предназначен для работы с молекулами, у которых есть одновременно и гидрофильная, и гидрофобная части. Если поместить молекулы с такой структурой в воду, они выстраиваются по одной на поверхности жидкости гидрофобной частью вверх. Затем с помощью специальных поршней молекулы «сжимают» на поверхности до нужной плотности и переносят получившуюся пленку на твердую подложку.

Чтобы сделать пленку прочнее, химики РУДН использовали ультрафиолетовое излучение. Его энергии хватает, чтобы разорвать углеводородные цепочки, которые как «усы» тянутся от верхнего и нижнего обода. После того, как в цепочках происходит разрыв, они связываются вновь, но уже с остатками углеводородных цепочек от соседних молекул каликсаренов. В результате молекулы пленки плотно связываются между собой.

Химики РУДН изучили строение образовавшихся пленок с помощью атомно-силового микроскопа и обнаружили, что эффективность ультрафиолетового облучения зависит от длины исходных углеводородных цепей. Наиболее стабильные пленки получились из молекул, имеющих короткие цепи. Ультрафиолетовое облучение упрочняет их. Для молекул с длинными углеводородными цепями облучение ультрафиолетом снижает прочность пленки — на изображении с микроскопа пленка выглядит прерывисто с отдельными замкнутыми скоплениями из нескольких молекул каликсаренов. Ультрафиолетовое излучение не всегда улучшает водоотталкивающее свойство пленки. Химики показали, что в зависимости от строения молекулы, облучение может ухудшать гидфрофобность или не оказывать значимого эффекта. Это важное наблюдение, поскольку пленки предполагается применять в качестве гидрофобных покрытий — от производства дисплеев до автомобильных дорог.

Результаты опубликованы в Materials Today Communications.

Новости
Все новости
Наука
30 июля
Химик РУДН нашел способ сделать производство биотполива в 4-10 раз эффективнее с помощью кремниевой матрицы и гетерополикислот

Химик РУДН создал кремниевый молекулярный каркас для получения эфиров из отходов сельского хозяйства, древесной и бумажной промышленности. Он в 4-10 раз повышает эффективность получения эфиров, которые можно использовать как биотопливо. Это позволит снизить энергозатраты и сделает производство биотоплива дешевле. 

Наука
28 июля
Химики РУДН разработали новый путь синтеза веществ для фармацевтики

Химики РУДН предложили универсальный способ синтеза производных тиеноиндолизинов. Свойства этих веществ позволяют использовать их для создания антибактериальных и противораковых препаратов, а также в производстве новых материалов для оптоэлектроники.

Наука
26 июля
Химики РУДН разработали домино-реакцию для получения противоопухолевых препаратов

Химики РУДН предложили новую реакцию для получения сложных органических веществ в одном сосуде. Продукты синтеза оказались эффективными против клеток раковых опухолей, в том числе — устойчивых к известным препаратам.