Инженеры РУДН назвали лучшие методы машинного обучения для обработки данных радаров
Изображения поверхности Земли и других планет получают с помощью радиолокатора (радара) с синтезированной апертурой (SAR). Радар располагают на космическом аппарате или самолете-носителе. Он сканирует поверхность и одновременно отслеживает свое положение. В результате получаются детальные карты поверхности, причем их качество не зависит ни от погоды, ни от времени суток. Самая распространенная разновидность таких радаров — PolSAR. Для обработки данных радара применяют методы машинного обучения. Из-за различий в работе алгоритмов они работают с разной точностью и скоростью. Поэтому при неправильно подобранном алгоритме вычисления оказываются менее точными или требуют большего времени на расчеты. Инженеры РУДН сравнили четыре наиболее популярных метода и выяснили, какой из них самый эффективный.
«Классификация данных PolSAR — одна из любимых тем в области дистанционного зондирования. Для этого используется большой спектр алгоритмов. Наиболее известный из них — метод опорных векторов SVM — широко применяется для классификации данных PolSAR. Однако до сих пор не проводилось исследований по использованию некоторых расширенных версий SVM. Мы сравнили эти методы для классификации данных PolSAR», — доктор технических наук Юрий Разумный, директор департамента механики и процессов управления Инженерной академии РУДН.
Инженеры РУДН совместно со своими зарубежными партнерами сравнили четыре метода: метод опорных векторов (SVM) и три его модификации — метод наименьших квадратов опорных векторов (LSSVM), метод релевантных векторов (RVM) и метод импорта векторов (IVM). Их работу проверили на трех наборах данных, полученных с PolSAR: снимках провинции Флеволанд (Нидерланды), окрестностей деревни Фоулум (Дания) и города Виннипег (Канада). Первый и третий набор данных включал в себя обширные сельскохозяйственные территории. На снимки Фолума попали в основном лес, сельскохозяйственные поля и заселенные площади. Задача алгоритмов машинного обучения — определить, как используется каждый участок земли (где выращивают пшеницу, где растет лес, где течет река и так далее). Обучение алгоритмов проводили на 5%, 10%, 50% и 90% данных, а оставшиеся использовали для проверки их работы. Эффективность алгоритмов оценивали показателем, изменяющимся от 0 до 1, причем единице соответствует идеальная классификация, а также временем, необходимым для обучения по алгоритму.
Самым быстрым оказался LSSVM — при любом объеме обучающих данных и для всех трех районов. Например, для Фоулума при 50% данных, отданных под обучение, LSSVM понадобилось менее 0,5 секунд, а остальным алгоритмам понадобилось в 12–15 раз больше времени. Однако наиболее эффективным оказался SVM. Он показал самый высокий показатель обучения почти для всех объемов данных для Виннипега и Фоулума: 0,78 для Фоулума и 0,69 для Виннипега. На втором месте в обоих случаях оказался IVM — 0,76 и 0,68 соответственно.
«SVM оказался более эффективным, более точным и более стабильным при классификации двух из трех наборов данных. Еще один вывод, который мы сделали, — потрясающая скорость LSSVM по сравнению с другими методами. LSSVM выдает сопоставимую точность со скоростью в 12 раз быстрее, чем SVM, и примерно в 15 раз быстрее, чем RVM и IVM. Поэтому LSSVM можно рассматривать как достойную модификацию SVM с приемлемой точностью и большей скоростью», — Джавад Хатамиафкуиех, аспирант инженерной академии РУДН.
Исследование опбуликовано в European Journal of Remote Sensing.
В РУДН назвали имена самых результативных ученых по итогам 2025 года. Традиционный рейтинг научно-педагогических работников, который проводится с 2023 года, определил лидеров в трех ключевых номинациях: «Самый цитируемый ученый», «Лидер по коммерциализации РИД» и «Лучший руководитель гранта».
Экспертная комиссия оценивала результативность ученых по объективным количественным показателям: индексам цитирования, объему привлеченного финансирования и успехам во внедрении разработок в реальный сектор экономики.
В РУДН прошла торжественная церемония вручения ежегодной премии в области науки и инноваций. Ее обладателями стали четыре ученых вуза: Дмитрий Кучер, Ольга Ломакина, Константин Гомонов и Вячеслав Бегишев.
Представьте, что вам нужно измерить размер пылинки, которая в тысячу раз тоньше человеческого волоса. Мало того — пылинка не стоит на месте, а хаотично движется в жидкости. Именно такую задачу каждый день решают фармацевты, контролируя качество современных лекарств. И вот теперь — впервые в России — у них появится единый, законодательно утвержденный рецепт такого измерения.