Инженеры РУДН назвали лучшие методы машинного обучения для обработки данных радаров

Инженеры РУДН назвали лучшие методы машинного обучения для обработки данных радаров

Инженеры РУДН сравнили четыре метода машинного обучения, которые применяют для обработки данных радиолокационных радаров. Исследователи назвали самый эффективный и самый быстрый методы.

Изображения поверхности Земли и других планет получают с помощью радиолокатора (радара) с синтезированной апертурой (SAR). Радар располагают на космическом аппарате или самолете-носителе. Он сканирует поверхность и одновременно отслеживает свое положение. В результате получаются детальные карты поверхности, причем их качество не зависит ни от погоды, ни от времени суток. Самая распространенная разновидность таких радаров — PolSAR. Для обработки данных радара применяют методы машинного обучения. Из-за различий в работе алгоритмов они работают с разной точностью и скоростью. Поэтому при неправильно подобранном алгоритме вычисления оказываются менее точными или требуют большего времени на расчеты. Инженеры РУДН сравнили четыре наиболее популярных метода и выяснили, какой из них самый эффективный.

«Классификация данных PolSAR — одна из любимых тем в области дистанционного зондирования. Для этого используется большой спектр алгоритмов. Наиболее известный из них — метод опорных векторов SVM — широко применяется для классификации данных PolSAR. Однако до сих пор не проводилось исследований по использованию некоторых расширенных версий SVM. Мы сравнили эти методы для классификации данных PolSAR», — доктор технических наук Юрий Разумный, директор департамента механики и процессов управления Инженерной академии РУДН.

Инженеры РУДН совместно со своими зарубежными партнерами сравнили четыре метода: метод опорных векторов (SVM) и три его модификации — метод наименьших квадратов опорных векторов (LSSVM), метод релевантных векторов (RVM) и метод импорта векторов (IVM). Их работу проверили на трех наборах данных, полученных с PolSAR: снимках провинции Флеволанд (Нидерланды), окрестностей деревни Фоулум (Дания) и города Виннипег (Канада). Первый и третий набор данных включал в себя обширные сельскохозяйственные территории. На снимки Фолума попали в основном лес, сельскохозяйственные поля и заселенные площади. Задача алгоритмов машинного обучения — определить, как используется каждый участок земли (где выращивают пшеницу, где растет лес, где течет река и так далее). Обучение алгоритмов проводили на 5%, 10%, 50% и 90% данных, а оставшиеся использовали для проверки их работы. Эффективность алгоритмов оценивали показателем, изменяющимся от 0 до 1, причем единице соответствует идеальная классификация, а также временем, необходимым для обучения по алгоритму.

Самым быстрым оказался LSSVM — при любом объеме обучающих данных и для всех трех районов. Например, для Фоулума при 50% данных, отданных под обучение, LSSVM понадобилось менее 0,5 секунд, а остальным алгоритмам понадобилось в 12–15 раз больше времени. Однако наиболее эффективным оказался SVM. Он показал самый высокий показатель обучения почти для всех объемов данных для Виннипега и Фоулума: 0,78 для Фоулума и 0,69 для Виннипега. На втором месте в обоих случаях оказался IVM — 0,76 и 0,68 соответственно.

«SVM оказался более эффективным, более точным и более стабильным при классификации двух из трех наборов данных. Еще один вывод, который мы сделали, — потрясающая скорость LSSVM по сравнению с другими методами. LSSVM выдает сопоставимую точность со скоростью в 12 раз быстрее, чем SVM, и примерно в 15 раз быстрее, чем RVM и IVM. Поэтому LSSVM можно рассматривать как достойную модификацию SVM с приемлемой точностью и большей скоростью», — Джавад Хатамиафкуиех, аспирант инженерной академии РУДН.

Исследование опбуликовано в European Journal of Remote Sensing.

Новости
Все новости
Наука
17 февраля
Самые результативные: в РУДН подвели итоги рейтинга научно-педагогических работников за 2025 год

В РУДН назвали имена самых результативных ученых по итогам 2025 года. Традиционный рейтинг научно-педагогических работников, который проводится с 2023 года, определил лидеров в трех ключевых номинациях: «Самый цитируемый ученый», «Лидер по коммерциализации РИД» и «Лучший руководитель гранта».

Экспертная комиссия оценивала результативность ученых по объективным количественным показателям: индексам цитирования, объему привлеченного финансирования и успехам во внедрении разработок в реальный сектор экономики.

Наука
16 февраля
Лауреаты премии РУДН в области науки и инноваций — 2025: поздравляем ведущих и молодых ученых университета!

В РУДН прошла торжественная церемония вручения ежегодной премии в области науки и инноваций. Ее обладателями стали четыре ученых вуза: Дмитрий Кучер, Ольга Ломакина, Константин Гомонов и Вячеслав Бегишев.

Наука
13 февраля
Невидимое станет измеряемым: учёные РУДН разработали документ для контроля качества целого класса препаратов

Представьте, что вам нужно измерить размер пылинки, которая в тысячу раз тоньше человеческого волоса. Мало того — пылинка не стоит на месте, а хаотично движется в жидкости. Именно такую задачу каждый день решают фармацевты, контролируя качество современных лекарств. И вот теперь — впервые в России — у них появится единый, законодательно утвержденный рецепт такого измерения.