Математик РУДН рассчитал параметры оптимального управления толпой и дорожным движением
Большинство физических процессов можно описать с помощью дифференциальных уравнений. Для этого искомую величину –например, температуру или скорость – представляют в виде функции. Для нее можно записать дифференциальное уравнение, решение которого опишет поведение искомой величины. Однако в некоторых случаях записать дифференциальное уравнение невозможно, и математики прибегают к так называемым дифференциальным включением. Это уравнения, в которых знак равенства заменяют знаком принадлежности, или включения. Математик РУДН разработал полное решение группы дифференциальных включений и показал, как его можно применять в задачах оптимального городского управления.
Задачи оптимального управления формируют отдельную теорию в математике. Суть таких задач – численно или теоретически построить такой закон управления, который наилучшим способом приводил бы систему в некоторое заданное состояние. Например, автомобиль приближается к светофору, и на расстоянии 250 метров между ними загорается зеленый свет, который горит в течение 30 секунд. Необходимо рассчитать, как нужно двигаться автомобилю, чтобы расход энергии был минимальный. На первый взгляд, это задача школьного уровня, однако нужно учесть, что и повышение скорости, и торможение расходуют топливо. Такая задача уже относится к теории оптимального управления и решить ее можно с помощью дифференциального включения.
«Помимо исключительно теоретического интереса, мотивацией для исследования стала непростая задача оптимального контроля с внутренними ограничениями. Она появляется на практике при описании толпы на плоскости», – рассказал Борис Мордухович, один из авторов исследования, сотрудник Математического института имени С.М. Никольского РУДН.
Действительно, с помощью рассмотренного дифференциального включения можно описывать, например, движение толпы. Допустим, в одном помещении оказалось много людей, и каждому нужно как можно быстрее из него выйти. При этом выход из помещения только один. Результаты математиков РУДН помогут рассчитать, по какой траектории и с какой скоростью нужно двигаться каждому отдельному человеку.
На практике результаты исследования можно применить, например, для расчета оптимального движения беспилотных автомобилей. Еще одна возможная область применения – многоагентные робототехнические комплексы – системы нескольких роботов с искусственным интеллектом, выполняющих одну задачу, например, сортировку или транспортировку грузов. Несколько таких роботов образуют «толпу», и чтобы их работа была эффективной, необходимо рассчитать оптимальные скорости и траектории для каждого из них.
Статья в журнале Journal of Differential Equations.
В России проживают около 1 600 000 детей с подтверждённым синдромом дефицита внимания и гиперактивностью. Необходимая терапия не всегда доступна их семьям: из-за стоимости или отсутствия рядом специализированных центров. Преподаватели и учащиеся РУДН и АлтГУ разработали для таких детей специальное приложение, которое повышает внимательность и уменьшает тревожность с помощью метода цветовой фотостимуляции (ЦФС).
Проект по разработке клеточной модели плаценты стал победителем в номинации «Научные материалы» конкурса «Молодые учёные 3.0», организованного при поддержке Фонда президентских грантов и Т-Банка.
В институте экологии уже 5 лет существует студенческий научно-популярный турклуб, открытый при НСО GreenLab. При поддержке преподавателей студенты организуют самостоятельные экспедиции — научно-исследовательские походы с выполнением поставленной научной задачи, а также научно-популярные и образовательные поездки.