Математик РУДН улучшил алгоритм машинного обучения для распознавания изображений со спутников

Математик РУДН улучшил алгоритм машинного обучения для распознавания изображений со спутников

Математик РУДН предложил метод машинного обучения, который позволяет автоматически распознавать снимки со спутников и авиационных радаров. Алгоритм может определить, какой вид растений посажен на полях, точнее, чем существовавшие ранее разработки.

Системы современных спутников и радаров можно использовать для автоматического мониторинга землетрясений, извержений вулканов, пожаров и других катаклизмов, а также чтобы следить за состоянием почв, растительности, рек. Чтобы автоматизировать этот процесс, нужны сложные алгоритмы распознавания и классификации объектов, позволяющие компьютеру по набору пикселей понять, что изображено на снимке. Для этих целей используют машинное обучение — компьютер «просматривает» тысячи примеров и таким образом учится распознавать изображения самостоятельно. Чтобы улучшить результаты машинного обучения, часто используют комбинацию нескольких обучающих алгоритмов. Это дает более точные решения, чем каждый из них в отдельности. Математик РУДН разработал такой ансамблевый метод с использованием трех алгоритмов для обработки данных из нескольких источников.

Математики использовали данные пяти мини-спутников RapidEye и авиационного радара UAVSAR за 5 и 7 июля 2012 года — они снимали один и тот же участок местности в Канаде. Съемка RapidEye велась в пяти диапазонах светового спектра: синем (B), зеленом (G), красном ®, ближнем инфракрасном (NIR) и области, называемой «красный край» (RE), в которой происходит резкое усиление отражения зелёной растительности. Данные содержали 38 характеристик — спектральные каналы, индексы растительности, текстурные параметры и так далее. Их пространственное разрешение — то есть минимальный размер объекта, различимый на снимках, — около пяти метров. Радиолокационные изображения UAVSAR включали 49 различных характеристик, их пространственное разрешение — около 15 метров. Математики сопоставили полученные снимки со справочными данными об этой территории, собранными летом 2012 года. В них выделили семь типов растений — широколиственные растения, рапс, кукуруза, овес, горох, соя и пшеница. Новый алгоритм «обучили» на основе примеров полученных изображений и данных о типе посадок, а затем сравнили его предсказание с результатами работы других программ, устроенных по похожему принципу.

Новый метод показал более высокую точность интерпретации изображений, причем как на больших, так и на ограниченных объемах примеров для обучения алгоритмов. Если обучение проходило на 5% от всех данных, то новый алгоритм распознавал изображения верно в не менее 65% случаев, другие алгоритмы — в 52-60%. С увеличением доли обучающих данных до 50% от общего объема точность нового алгоритма повышалась до почти 90%, а других — до 75-86%. Таким образом, применение нового алгоритма было признано более эффективным.

«Наш метод может быть предложен для системы классификации землепользования и растительного покрова с помощью данных, полученных из разных источников. Например, спутников Landsat или Sentinel constellation», — кандидат технических наук Владимир Разумный, доцент департамента механики и мехатроники РУДН.

Результаты опубликованы в журнале International Journal of Image and Data Fusion

Новости
Все новости
Наука
3 сентября
Доцента РУДН наградили Государственной поощрительной премией Египта в области сельскохозяйственных наук

Египетский учёный Абдельрауф Масуд Али, доцент департамента рационального природопользования института экологии РУДН, стал лауреатом Государственной поощрительной премии Египта в области сельскохозяйственных наук за 2024 год.

Наука
28 августа
Разгадана роль грибов в поддержании разнообразия деревьев – глобальное исследование при участии ученых РУДН

Леса — это не только легкие планеты, но и дом для миллионов видов. Однако до сих пор оставалось неясным, как подземные взаимодействия между деревьями и грибами влияют на видовое богатство лесов в разных климатических условиях. Предыдущие исследования давали противоречивые результаты: в одних регионах доминирование определенных грибов снижало разнообразие деревьев, в других — повышало.

Наука
18 августа
5 млн рублей на науку: в РУДН назвали обладателя первой премии вуза в области математики

Первым победителем международной Премии РУДН за научные достижения и заслуги в области математики в размере 5 млн рублей стал учёный из Санкт-Петербурга Сергей Иванов. Обладатель награды — доктор физико-математических наук, член-корреспондент РАН, профессор Санкт-Петербургского государственного университета и главный научный сотрудник Санкт-Петербургского отделения Математического института им. В.А. Стеклова РАН. Вручение премии состоялось 18 августа во время Международной конференции по дифференциальным и функционально-дифференциальным уравнениям DFDE.