Молекулярный комплекс-карусель сделает OLED-экраны в два раза ярче
От других современных типов дисплеев – плазменных и жидкокристаллических – экраны на органических светодиодах отличаются более высокой яркостью, контрастностью и более низким энергопотреблением. Однако OLED-дисплеи дороже, кроме того, сырье для их производства – проводящие полимеры – токсично, что создает сложности в производстве и утилизации.
Чтобы удешевить OLED-дисплеи и избавиться от токсичного сырья, можно использовать вместо полимеров люминесцентные комплексные соединения – молекулы, где небольшие органические фрагменты окружают центральный ион металла. Но до сих пор подобрать комплексы, которые показывали бы явное преимущество в яркости и экономичности перед полимерами, не удавалось. Достаточно эффективные соединения на основе иридия или платины были очень дорогими, а более дешевые комплексы с ионами переходных металлов — недостаточно эффективными.
Химик РУДН Александр Смольяков, сотрудник Научного центра «Кластер направленного синтеза природных соединений», обнаружил соединения, которое позволит сделать OLED-дисплеи значительно ярче и экономичнее полимерных. Центрами этих комплексов были не платина или иридий, а более дешевые медь и серебро, которые к тому же оказались более эффективными и менее токсичными по сравнению с полимерами.
Исследователь синтезировал молекулу, в центре которой находится не один, а сразу три иона одновалентных меди или серебра. Чтобы эта структура из трех ионов металла не распадалась, химик стабилизировал ее с помощью производных пиразола — ароматических молекул с двумя атомами азота в цикле, — а в качестве лигандов (то есть окружающих ион молекул-доноров электронов) использовал фосфорорганические молекулы. При этом ионы одновалентной меди и серебра формируют трехцентровое ядро в форме треугольника, а лиганды присоединяются к ядру через атомы фосфора и остаются при этом довольно подвижными.
При комнатной температуре энергии тепловых колебаний оказывается достаточно для разрушения связи между фосфором и металлом на короткое время. Однако количество атомов фосфора в молекуле два, а атомов металла – три, поэтому один из атомов металла всегда остается без пары и в случае появления свободного фосфора сразу же притягивает его к себе. То есть лиганд «перепрыгивает» к соседнему иону в трехцентровом ядре и образует связь, которая вскоре снова может разрушиться из-за тепловых колебаний. Молекула таким образом превращается в своеобразную молекулярную «карусель». Такая конфигурация делает устойчивыми как комплексы с ядрами из ионов серебра, так и с ядрами из одновалентной меди – соединения не распадаются сразу после синтеза, как многие другие структуры подобного типа.
Химики обнаружили, что подобная «карусельная» структура комплексных соединений приводит к возникновению двух энергетических состояний, переход между которыми может приводить к люминесценции. В случае меди эта структура обладает значительным квантовым выходом – то есть отношением количества поглощенных и испущенных фотонов – в 41 процент. Органические полимеры, которые сегодня используются в OLED-дисплеях, обеспечивают квантовый выход в два раза ниже: около 20 процентов.
Трехцентровые медные комплексы-«карусели» ученые называют перспективными для будущего OLED-технологии.
Статья в Inorganic Chemistry
Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.
Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.
В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.