Завершен второй этап исследований по теме «Разработка прикладных решений в области обработки и интеграции в едином геопространстве больших объемов разнородных оперативных, ретроспективных и тематических данных дистанционного зондирования Земли с применени

Завершен второй этап исследований по теме «Разработка прикладных решений в области обработки и интеграции в едином геопространстве больших объемов разнородных оперативных, ретроспективных и тематических данных дистанционного зондирования Земли с применени

Завершился второй этап исследований по теме «Разработка прикладных решений в области обработки и интеграции в едином геопространстве больших объемов разнородных оперативных, ретроспективных и тематических данных дистанционного зондирования Земли с применением цифровых, интеллектуальных технологий и искусственного интеллекта», в котором АО «Российские космические системы» - индустриальный партнер.

Проект направлен на проведение прикладных научных исследований и получения результатов, необходимых для реализации приоритетов научно-технологического развития Российской Федерации, определенных Стратегией технологического развития Российской Федерации.

В соответствии с техническим заданием и для обучения нейронных сетей алгоритма распознавания зданий и сооружений по данным космической съемки сверхвысокого разрешения (АР СЗ), алгоритма распознавания и классификации изменений лесного фонда по данным космической съемки сверхвысокого и высокого разрешения (АРК ЛФ) и алгоритма распознавания участков недропользования открытого типа (карьеров) по данным космической съемки сверхвысокого и высокого разрешения (АР УНОТ),  были разработаны и созданы базы данных:

  • Эталонные объекты здания и сооружения.
  • Эталонные объекты участков недропользования открытого типа.
  • Эталонные объекты участков недропользования открытого типа(карьеры).
  • Эталонные объекты изменений лесного фонда типа «гарь».
  • Эталонные объекты изменений лесного фонда типа «гарь».
  • Эталонные объекты изменений лесного фонда типа «вырубка».
  • Эталонные объекты изменений лесного фонда типа «вырубка».
  • Эталонные объекты изменений лесного фонда типа «ветровал»
  • Эталонные объекты изменений лесного фонда типа «ветровал».

Вышеназванные базы данных подлежат правовой охране в Федеральной службе интеллектуальной собственности

По результатам выполнения этапа 2 «Теоретические исследования» ПНИ были получены следующие результаты:

  • определены требования к исходным данным, архитектуре нейронной сети и ансамблевых алгоритмов машинного обучения, точностным характеристикам распознаваемых объектов для алгоритмов АР СЗ, АРК ЛФ, АР УНОТ;
  • выполнена разработка алгоритмов АР СЗ, АРК ЛФ, АР УНОТ;
  • подготовлена программная реализация алгоритмов АР СЗ, АРК ЛФ, АР УНОТ;
  • подготовлена программная документация на программную реализацию алгоритмов АР СЗ, АРК ЛФ, АР УНОТ.

В результате работ второго этапа была подготовлены первичные материалы заявки на выдачу патента РФ на изобретения интеллектуальной космической системы для мониторинга зданий и сооружений, интеллектуальной космической системы для мониторинга участков недропользования открытого типа и интеллектуальной космической системы для мониторинга лесного фонда.

Для популяризации проекта АО «РКС» совместно с РУДН принял участие в таких мероприятиях:

  1. Международная выставка авиационно-космической техники FIDAE–2018;
  2. XXI Московском международном салоне изобретений «Архимед-2018»;
  3. Петербургский международный экономический форум 2018 г.;
  4. Презентация АО ««Российские космические системы» новой системы глобальной спутниковой связи.

Так же в рамках темы были опубликованы ряд статей:

  • Economic optimization and evolutionare programming when using remote sensing data. // Roman Shamin, Gabriel Enrike Alberto, Ayzhana Uryngaliyeva and Aleksandr Semenov;
  • Deep learning for region detection in high-resolution aerial images.// Vladimir Khryashchev, Vladimir Pavlov, Andrey Priorov, Anna Ostrovskaya.
  • Optimization of Convolutional Neural Network for Object Recognition On atellite Images. // Vladimir V. Khryashchev, Vladimir A. Pavlov, Anna A. Ostrovskaya, Alexander S. Semenov
  • Dеtermination of the architecture of the neural network for recognition algorithm  UHRSI.  // AnnaA. Ostrovskaya, NikitaE. Semenov, AntonO. Rubtsov
  • Comparison of Different Convolutional Neural Network Architectures for Satellite Image Segmentation. // Vladimir Khryashchev, Anna Ostrovskaya, Anton O. Rubtsov

Проект осуществляется за счет субсидий Минобрнауки (соглашение от 26.09.2017 г. №14.57521.21.0167, уникальный идентификатор работ RFMEFI57517X0167).

Новости
Все новости
Наука
29 января
«Живой тест воды»: учёный РУДН создаёт новую систему экомониторинга с помощью ИИ и рыбок Danio rerio

Кандидат биологических наук, доцент института экологии РУДН Всеволод Павшинцев разрабатывает инновационную методику, которая позволяет оценивать состояние пресных водоёмов с помощью рыбок данио-рерио и искусственного интеллекта. Проект, поддержанный грантом университета, призван перейти от простого химического анализа воды к пониманию того, как загрязнители воздействуют на живые организмы.

Наука
29 января
«Идеальный» дентальный имплантат: доцент инженерной академии РУДН рассказала о своей разработке

Доцент кафедры наноэлектроники и микросистемной техники РУДН Екатерина Гостева возглавляет междисциплинарный проект по разработке технологии наноструктурирования поверхности имплантатов. Её цель — сделать приживление имплантатов быстрым, надёжным и доступным для самых разных групп пациентов.

Наука
28 января
От молекул к экосистемам: учёные-экологи РУДН создают высокоэффективные сорбенты на основе природных материалов

В институте экологии РУДН реализуется масштабный междисциплинарный проект в области экологической химии и материаловедения. Учёные работают над созданием высокоэффективных сорбентов на основе природных материалов для обезвреживания опасных загрязнителей окружающей среды.

Проект объединяет фундаментальные исследования на стыке химии, материаловедения и экологии и соответствует стратегическим целям развития науки и технологий Российской Федерации.