Химик РУДН предложил эффективные катализаторы для очистки воды от кофеина
Многие производственные и бытовые процессы загрязняют воду. Проверка воды на содержание хлора или солей металлов — рутинный процесс, но некоторые вещества начали попадать в воду недавно, и ещё неизвестно, насколько они опасны. Например, это частицы микропластика из косметических средств, остатки лекарств и кофеин из напитков. Сам по себе кофеин — не яд. Но он оказывает мощный эффект на живые организмы и может сильно исказить поведение и нарушить здоровье водных обитателей. У людей случайное загрязнение питьевой воды кофеином может вызвать неприятные последствия для психики. Ведь это вещество — сильный стимулятор, не случайно наряду с пищевой промышленностью он используется и в фармакологии.
«Чтобы удалить из воды такие вещества как кофеин, существуют разные техники: обработка озоном или хлором, фильтрация через мембраны, поглощение загрязнителей углеродом. Один из самых простых и экологичных способов — применение фотокатализаторов, таких как диоксид титана. Но в чистом виде этот материал не обладает достаточной для промышленного использования фотокаталитической активностью», — Рафаэль Луке, PhD, руководитель научного центра «Молекулярный дизайн и синтез инновационных соединений для медицины» РУДН.
Химик РУДН провёл ряд экспериментов и усовершенствовал диоксид титана с помощью фторирования и добавления оксидов меди и никеля. Сначала исследователь подготовил порошок диоксида титана с фтором, а затем обжигом при температуре до 400°C произвёл из него твёрдые композиты с металлами. Хотя содержание оксидов меди и никеля в них оказалось невелико — менее 1% от объема, — свойства материалов изменились. Они стали менее пористыми, а размеры ячеек в их кристаллической решётке увеличились.
Фотокаталитическую активность композитов сравнили с эффективностью чистого диоксида титана. Водные растворы кофеина и 100 миллиграммов каждого катализатора помещали в один сосуд и облучали ультрафиолетом от ртутной лампы высокого давления. Кроме того, раствор кофеина подвергали излучению без участия других химических веществ. Оказалось, что до 38% кофеина в воде разлагается под действием самого ультрафиолета. Чистый диоксид титана увеличивает эту долю до 54%, фторированный — до 78%. Оксиды никеля и меди показали ещё большую эффективность: в их присутствии разрушилось до 88 и 90% кофеина соответственно.
«Добавление металлов сделало поверхность катализатора неоднородной. Под просвечивающим электронным микроскопом мы можем различить в кристаллической структуре композитов разные грани, характерные, например, для оксида меди и для диоксида титана с фтором. Разные фазы находятся в близком контакте и образуют гетеропереходы: участки полупроводника, где происходит интенсивный перенос электронов. Это ведет к активному образованию гидроксильных радикалов -OH, разрушающих кофеин», — Рафаэль Луке, PhD, руководитель научного центра «Молекулярный дизайн и синтез инновационных соединений для медицины» РУДН.
Различия в структуре материала заметно усилили фотокаталитическую активность композитов. Скорость реакции в присутствии катализаторов с никелем и медью была в 4,2 раза выше, чем при использовании только диоксида титана, и в 2,8 раза выше по сравнению с фторированным диоксидом. Эксперимент показал, что композиты можно использовать несколько раз подряд без существенного снижения активности. Поэтому предложенный химиком РУДН метод — не только экологичный, но и потенциально эффективный экономически.
Результаты опубликованы в журнале Chemosphere.
Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.
Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.
В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.