Химики РУДН получили антибиотик из хитина

Химики РУДН получили антибиотик из хитина

Химики РУДН впервые получили полимерные наночастицы из производных хитозана с антибактериальной активностью на уровне современных антибиотиков. Хитозан — это полиаминосахарид, который получают из хитина и активно используют как биологическую добавку и косметологическое средство, однако антибактериальные свойства хитозана выражены весьма слабо, главным образом, ввиду его низкой растворимости в воде. Химическая модификация хитозана позволяет получить растворимые в воде хитозановые производные с повышенной антибактериальной активностью. В данном же исследовании были получены производные хитозана, обладающие крайне высокой антибактерильной активностью и выраженной растворимостью в воде. Чтобы синтезировать хитозановые производные, из которых образуются высокоактивные наночастицы, ученые разработали новый подход на основе сочетания методов клик-химии и ультразвуковой обработки. С помощью предложенного подхода можно будет получать и другие полисахаридные частицы с антибактериальной активностью. Работа опубликована в журнале International Journal of Biological Macromolecules.

Хитозан – нетоксичный биоразлагаемый и биосовместимый полимер, который промышленно получают из хитина, удаляя из его звеньев ацетильную группу. Хитозан активно используют в качестве биологической добавки, косметологического средства и регулятора роста в сельском хозяйстве, добавляют в корма для животных. Однако все полезные свойства хитозана связаны с его адгезивными свойствами: он взаимодействует со слизистыми оболочками, облегчая проникновение лекарственных препаратов внутрь организма. Хитозан характеризуется слабой антибактериальной активностью, которая сильно ограничена его низкой растворимостью в воде.

Химики РУДН под руководством ассистента кафедры неорганической химии Андрея Критченкова впервые получили производные с антибактериальными свойствами на уровне современных антибиотиков. Повышенная антибактериальная активность оказалась характерна для соединений хитозана с триазольным циклом и бетаиновым фрагментом, в которых можно управлять количеством катионных групп.

Чтобы получить это соединение, Критченков и его коллеги впервые использовали оригинальную методику – она совмещает два подхода, сравнительно недавно применяемых для химических превращений хитозанов. Первый из них – это азид-алкиновое циклоприсоединение, один из важнейших методов клик-химии, который позволяет очень селективно и с высоким выходом скреплять между собой нужные молекулы. Второй подход — ультразвуковая обработка, за счет нее значительно ускоряется клик-реакция и не требуются анаэробные условия её проведения. Одновременно используя два этих метода, ученые могли получить катионный полимер, при этом контролируя его размер и точный химический состав.

"Mы впервые перенесли в область химии хитозана одновременное сочетание клик-реакций и ультразвуковой обработки и смогли подобрать такие условия ультразвукового облучения, при котором и реакция протекает скорее, и условия её выполнения значительно мягче и удобнее, и полимерная цепь исходного хитозана сохраняет свою целостность, то есть не разрывается. Видимо, сложность оптимизации условий по частоте, мощности, амплитуде ультразвука останавливала попытки наших предшественников закончить это дело. Это очень сложная и кропотливая работа", — сказал Критченков.

Затем, чтобы повысить антибактериальную активность полимера, из отдельных полимерных молекул химики получали наночастицы диаметром около 100 нанометров. Известно, что часто именно в форме наночастиц полимеры приобретают антибактериальные свойства. Наличие у наночастиц необходимых свойств Критченков и его коллеги  проверили на клетках золотистого стафилококка (Staphylococcus aureus) и кишечной палочки (Escherichia coli). Оказалось, что если для отдельных компонентов полимерного соединения – триазола, бетаина и хитозана – зона ингибирования не превосходила 13 мм, то для полученных наночастиц эта величина достигала 45 мм для стафилококка и 36 мм для кишечной палочки. Это, например, более чем в полтора раза превышает показатели стандартных антибиотиков – амплициллина и гентамицина.

Авторы работы отмечают, что применение нашлось не только для наночастиц производных хитозана, но и для полимера в его изначальной форме. Полимерные молекулы представляют собой поликатионы, поэтому эффективно связывают полианионы, например нуклеиновых кислот. Поэтому их можно использовать для трансфекции – введения ДНК в эукариотические клетки невирусным методом. Ученые измерили трансфекционную активность на клетках печени человека, и получили значения порядка 30 тысяч клеток на квадратный сантиметр – то есть на уровне современных коммерческих препаратов, таких как липофектин.

"Перспектива применения в качестве антибактериального средства точно есть. Сейчас наши коллеги-биологи заканчивают эксперименты in vivo, и они очень успешные", — отметил ученый.

По словам ученых, основное преимущество полученных производных хитозана и в качестве антибактериального средства, и для систем переноса генетической информации – отсутствие токсических эффектов. Химики уверены, что аналогичным образом можно будет получать и другие полимерные частицы с антибактериальной и трансфекционной активностью.

Работа в журнале International Journal of Biological Macromolecules

Новости
Все новости
Наука
18 июня
Медики РУДН стали участниками и призерами проекта «Сообщество молодых ученых Медскан»

Студенты медицинского института РУДН участвовали в научно-образовательной программе «Сообщество молодых ученых» клиники Hadassah Medical Moscow.

Наука
17 июня
ЦУР – стратегический ориентир для ученых РУДН

В мастерской управления «Сенеж» завершился четвертый модуль программы развития кадрового управленческого резерва в области науки, технологий и высшего образования. Единственный участник от РУДН — Александр Леонидович Чупин, кандидат экономических наук, заместитель декана по научной работе экономического факультета. Основная цель программы — обучение управленческим навыкам молодых ученых, которые уже добились значительных успехов в научной и образовательной деятельности.

Наука
10 июня
Учёный РУДН: Африка делает ставку на малые модульные реакторы для решения энергетических проблем

По данным Международного энергетического агентства (МЭА), потребление электроэнергии в Африке за последние два года (2020–2022) выросло более чем на 100%. Однако 74,9% этой энергии по-прежнему производится за счет сжигания органического топлива — природного газа, угля и нефти. При этом уровень электрификации на континенте остается крайне низким — всего 24%, тогда как в других развивающихся странах он достигает 40%. Даже в подключенных к сети районах электроснабжение часто ненадежно: промышленные предприятия теряют энергию в среднем 56 дней в году.