Химики РУДН получили антибиотик из хитина

Химики РУДН получили антибиотик из хитина

Химики РУДН впервые получили полимерные наночастицы из производных хитозана с антибактериальной активностью на уровне современных антибиотиков. Хитозан — это полиаминосахарид, который получают из хитина и активно используют как биологическую добавку и косметологическое средство, однако антибактериальные свойства хитозана выражены весьма слабо, главным образом, ввиду его низкой растворимости в воде. Химическая модификация хитозана позволяет получить растворимые в воде хитозановые производные с повышенной антибактериальной активностью. В данном же исследовании были получены производные хитозана, обладающие крайне высокой антибактерильной активностью и выраженной растворимостью в воде. Чтобы синтезировать хитозановые производные, из которых образуются высокоактивные наночастицы, ученые разработали новый подход на основе сочетания методов клик-химии и ультразвуковой обработки. С помощью предложенного подхода можно будет получать и другие полисахаридные частицы с антибактериальной активностью. Работа опубликована в журнале International Journal of Biological Macromolecules.

Хитозан – нетоксичный биоразлагаемый и биосовместимый полимер, который промышленно получают из хитина, удаляя из его звеньев ацетильную группу. Хитозан активно используют в качестве биологической добавки, косметологического средства и регулятора роста в сельском хозяйстве, добавляют в корма для животных. Однако все полезные свойства хитозана связаны с его адгезивными свойствами: он взаимодействует со слизистыми оболочками, облегчая проникновение лекарственных препаратов внутрь организма. Хитозан характеризуется слабой антибактериальной активностью, которая сильно ограничена его низкой растворимостью в воде.

Химики РУДН под руководством ассистента кафедры неорганической химии Андрея Критченкова впервые получили производные с антибактериальными свойствами на уровне современных антибиотиков. Повышенная антибактериальная активность оказалась характерна для соединений хитозана с триазольным циклом и бетаиновым фрагментом, в которых можно управлять количеством катионных групп.

Чтобы получить это соединение, Критченков и его коллеги впервые использовали оригинальную методику – она совмещает два подхода, сравнительно недавно применяемых для химических превращений хитозанов. Первый из них – это азид-алкиновое циклоприсоединение, один из важнейших методов клик-химии, который позволяет очень селективно и с высоким выходом скреплять между собой нужные молекулы. Второй подход — ультразвуковая обработка, за счет нее значительно ускоряется клик-реакция и не требуются анаэробные условия её проведения. Одновременно используя два этих метода, ученые могли получить катионный полимер, при этом контролируя его размер и точный химический состав.

"Mы впервые перенесли в область химии хитозана одновременное сочетание клик-реакций и ультразвуковой обработки и смогли подобрать такие условия ультразвукового облучения, при котором и реакция протекает скорее, и условия её выполнения значительно мягче и удобнее, и полимерная цепь исходного хитозана сохраняет свою целостность, то есть не разрывается. Видимо, сложность оптимизации условий по частоте, мощности, амплитуде ультразвука останавливала попытки наших предшественников закончить это дело. Это очень сложная и кропотливая работа", — сказал Критченков.

Затем, чтобы повысить антибактериальную активность полимера, из отдельных полимерных молекул химики получали наночастицы диаметром около 100 нанометров. Известно, что часто именно в форме наночастиц полимеры приобретают антибактериальные свойства. Наличие у наночастиц необходимых свойств Критченков и его коллеги  проверили на клетках золотистого стафилококка (Staphylococcus aureus) и кишечной палочки (Escherichia coli). Оказалось, что если для отдельных компонентов полимерного соединения – триазола, бетаина и хитозана – зона ингибирования не превосходила 13 мм, то для полученных наночастиц эта величина достигала 45 мм для стафилококка и 36 мм для кишечной палочки. Это, например, более чем в полтора раза превышает показатели стандартных антибиотиков – амплициллина и гентамицина.

Авторы работы отмечают, что применение нашлось не только для наночастиц производных хитозана, но и для полимера в его изначальной форме. Полимерные молекулы представляют собой поликатионы, поэтому эффективно связывают полианионы, например нуклеиновых кислот. Поэтому их можно использовать для трансфекции – введения ДНК в эукариотические клетки невирусным методом. Ученые измерили трансфекционную активность на клетках печени человека, и получили значения порядка 30 тысяч клеток на квадратный сантиметр – то есть на уровне современных коммерческих препаратов, таких как липофектин.

"Перспектива применения в качестве антибактериального средства точно есть. Сейчас наши коллеги-биологи заканчивают эксперименты in vivo, и они очень успешные", — отметил ученый.

По словам ученых, основное преимущество полученных производных хитозана и в качестве антибактериального средства, и для систем переноса генетической информации – отсутствие токсических эффектов. Химики уверены, что аналогичным образом можно будет получать и другие полимерные частицы с антибактериальной и трансфекционной активностью.

Работа в журнале International Journal of Biological Macromolecules

Новости
Все новости
Наука
29 декабря 2025
Построить устойчивое будущее: что такое ЦУР и как РУДН помогает их достигать

Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.

Наука
26 декабря 2025
Необоснованные обобщения и ложные выводы: учёные РУДН выявили «галлюцинации» ИИ при диагностике ментальных расстройств

Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.

Наука
25 декабря 2025
Наследие академика Пальцева: в РУДН прошла первая конференция по функциональной морфологии тканевого микроокружения

В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.