Математик РУДН предложил новый способ использования нейронных сетей для работы с данными больших размерностей

Математик РУДН предложил новый способ использования нейронных сетей для работы с данными больших размерностей

Математик РУДН предложил новый подход к изучению распределения вероятностей наблюдаемых данных с помощью искусственных нейронных сетей. Новый подход лучше взаимодействует с так называемыми выбросами — с теми объектами входных данных, которые значительно выделяются из общей выборки.

Восстановление распределения вероятностей наблюдаемых данных искусственными нейронными сетями — это наиболее важная часть машинного обучения. Распределение вероятностей не только позволяет прогнозировать поведение исследуемой системы, но и количественно оценить неопределенность, с которой делаются прогнозы. Главная трудность заключается в том, что, как правило, распределения данных в точном виде не доступны. Для решения этой проблемы используют байесовские и близкие к ним приближенные методы. Но их использование увеличивает сложность нейронной сети. Снизить неопределенность позволяет комбинация байесовских методов с другими (например, с дельта-методом).

Математики РУДН предложили использовать детерминированные веса для нейронных сетей, что позволяет преодолеть ограничения байесовских методов. Они получили формулу, которая позволяет корректно оценить дисперсию распределения наблюдаемых данных. Предложенную модель проверили на разных данных: синтетических и реальных; на данных, содержащих выбросы и на тех, из которых они были предварительно удалены. Новый метод позволяет восстанавливать распределения вероятностей с недоступной прежде точностью.

Математик РУДН Павел Гуревич вместе с коллегами использовали детерминированные веса для нейронных сетей, чего никогда не делалось в пределах байесовских нейронных сетей. Математики РУДН предположили, что истинное распределение является нормальным с неизвестным средним и дисперсией. Фактически они создали обновленную версию метода сопряженных градиентов (gradient conjugate prior), подходящую для нейронных сетей. В результате расчётов Павел Гуревич получил формулу, которая позволяет корректно оценить дисперсию распределения данных. Новый метод оценили по методу AUC (area under the curve — это площадь под графиком, который позволяет оценить качество классификации; чем выше оценка AUC, тем качественнее классификация). В результате получилось лучшее значение оценки AUC как для «чистых» наборов данных, так и для данных, содержащих выбросы.

Метод, который предложили математики РУДН, применим, например, к задаче выявления мошенничества (fraud detection): для объекта определяется, к какому из двух классов он принадлежит (мошенничество или не мошенничество). Такие методы относятся к классу «обучение с учителем» (supervised learning). Предложенный метод поможет эффективно определять, какие транзакции, скорее всего, будут мошенническими, при этом значительно уменьшая количество так называемых «ложных срабатываний» (false positives). Метод, предложенный математиками РУДН, чрезвычайно эффективен в обнаружении и предотвращении мошенничества, поскольку он позволяет автоматически обнаруживать «подозрительные» шаблоны в больших объемах данных.

Статья в журнале Artificial Intelligence.

Новости
Все новости
Наука
3 сентября
Доцента РУДН наградили Государственной поощрительной премией Египта в области сельскохозяйственных наук

Египетский учёный Абдельрауф Масуд Али, доцент департамента рационального природопользования института экологии РУДН, стал лауреатом Государственной поощрительной премии Египта в области сельскохозяйственных наук за 2024 год.

Наука
28 августа
Разгадана роль грибов в поддержании разнообразия деревьев – глобальное исследование при участии ученых РУДН

Леса — это не только легкие планеты, но и дом для миллионов видов. Однако до сих пор оставалось неясным, как подземные взаимодействия между деревьями и грибами влияют на видовое богатство лесов в разных климатических условиях. Предыдущие исследования давали противоречивые результаты: в одних регионах доминирование определенных грибов снижало разнообразие деревьев, в других — повышало.

Наука
18 августа
5 млн рублей на науку: в РУДН назвали обладателя первой премии вуза в области математики

Первым победителем международной Премии РУДН за научные достижения и заслуги в области математики в размере 5 млн рублей стал учёный из Санкт-Петербурга Сергей Иванов. Обладатель награды — доктор физико-математических наук, член-корреспондент РАН, профессор Санкт-Петербургского государственного университета и главный научный сотрудник Санкт-Петербургского отделения Математического института им. В.А. Стеклова РАН. Вручение премии состоялось 18 августа во время Международной конференции по дифференциальным и функционально-дифференциальным уравнениям DFDE.