Международная научная группа и химики РУДН предлагают новые реагенты для очистки вод от свинца

Международная научная группа и химики РУДН предлагают новые реагенты для очистки вод от свинца

Химики РУДН с коллегами из других стран синтезировали новые соединения, которые эффективно связывают ионы свинца и могут использоваться для его удаления из сточных вод и даже из живых организмов, то есть играть роль антидота при отравлении свинцом.

Комплексные соединения свинца широко применяются
для синтеза полимеров и соединений, необходимых для получения полупроводников, материалов для нелинейной оптики и ферроэлектриков. Большой радиус иона двухвалентного свинца Pb(II) позволяет менять число связанных с ним атомов, ионов или молекул (лигандов)
от 4 до 9. Таким образом, на основе свинца возможно получение широкого спектра веществ, объединяющих органические
и неорганические компоненты в составе одной молекулы. Широкое использование соединений свинца в производстве приводит к накоплению токсичных отходов, что стимулирует решение проблемы удаления свинца из сточных вод.

Федор Зубков с кафедры органической химии РУДН, совместно с коллегами из Ирана, Испании, Италии и Хорватии получили соединения, способные эффективно связывать свинец как в сточных водах, так и в организме человека
и животных. Химики создали их на основе гидразидов никотиновой и пиколиновой кислот. Нитрат, хлорид, и перхлорат-анионы в них служат противоионами положительно заряженным ионам свинца и стабилизируют комплекс благодаря сильным электростатическим взаимодействиям.

Для исследования полученных комплексов химикам пришлось сконструировать специальный прибор для синтеза
и одновременной селективной кристаллизации продуктов реакции. Для этого в основную часть сосуда помещали спиртовой раствор смеси нитрата свинца (II), соответствующего лиганда и перхлората натрия, как донора противоионов. Смесь нагревали при 60 °С так, чтобы боковое ответвление колбы, также заполненное спиртом, оставалось при комнатной температуре. Кристаллы комплекса, образовавшиеся в боковом сосуде через несколько дней синтеза, отфильтровывали, промывали эфиром и высушивали на воздухе. Выход металлокоплексов составил от 67 до 87 %
от теоретически возможного. 

По данным рентгеноструктурного анализа, один из комплексов оказался биядерным, то есть он содержал в своей структуре два иона свинца, связанных общим лигандом. С помощью компьютерного моделирования было показано,
что все комплексы образуют супрамолекулярные ансамбли с различным типом межмолекулярных взаимодействий.
В образовании таких структур важную роль играют анионы неорганических кислот, которые испытывают сильное электростатическое притяжение к внутренней координационной сфере свинцового комплекса. В результате образуются металлоорганические координационные полимеры (metal-organic frameworks, MOFs), которые являются перспективными металлоорганическими катализаторами и селективными акцепторами ионов тяжёлых металлов.

Полученные вещества - супрамолекулярные ансамбли – позволяют связывать и осаждать даже следовые количества свинца в сточных водах. Их можно будет использовать для очистки питьевой воды и даже в качестве антидота при отравлениях свинцом.

 

Статья в журнале Crystals.

Новости
Все новости
Наука
21 ноября
РУДН — в трёх предметных рейтингах Shanghai Ranking's Global Ranking of Academic Subjects-2025

Опубликованы результаты международных предметных рейтингов ARWU (Shanghai Ranking’s Global Ranking of Academic Subjects) по 55 предметным направлениям. РУДН занял места в трёх из них: «Сельское хозяйство», «Математика» и «Науки об окружающей среде».

Наука
20 ноября
Следящий за сахаром: студенты РУДН создали чат-бот для больных диабетом 1-го типа

Один из проектов акселератора RUDN.VC — чат-бот для больных сахарным диабетом 1-го типа. Его разработали студенты направления «Биомедицина» медицинского института РУДН Никита Радаев и Дмитрий Пруцких.

Наука
19 ноября
Инновации, гранты, технологии: о чём исследования молодых учёных РУДН и какие возможности для занятий наукой есть в вузе

Молодой учёный РУДН — это не просто исследователь, а мост между культурами и дисциплинами. Его сила — в «гибридном» мышлении: он соединяет традиции российской академической школы с глобальным взглядом, работает в международных коллаборациях и видит науку как инструмент решения конкретных проблем человечества — от продовольственной безопасности до межконфессионального диалога. Его исследования рождаются на стыке факультетов, а результаты говорят на языке статей уровней Q1 и Q2 и реальных технологий.