Биолог РУДН оценил устойчивость биопластиков к агрессивным средам

Биолог РУДН оценил устойчивость биопластиков к агрессивным средам

Биолог РУДН изучил, как на ультратонкие нановолокна биополимеров действуют агрессивные факторы внешней среды — вода, солевые растворы, озон. Результаты помогут подбирать нужный тип биопластика в зависимости от области использования — например, для медицинских имплантатов, биоразлагаемой упаковки или фильтров для очистки водоемов.

Биопластики — альтернатива обычному пластику. Их получают из отходов растительной и пищевой промышленности. Безопасный состав позволяет использовать их в качестве фильтров для газов и жидкостей, «губок» для очистки водоемов, медицинских имплантатов. В зависимости от области использования биопластики подвергаются воздействию разных факторов внешней среды — света, воды, температуры, внутренней среды организмов. До сих пор не известно, как внешняя среда влияет на наноструктуру изделий из биопластиков. Ученые выяснили, как среда влияет на нановолокна двух пластиков органического происхождения: полилактида и полигидроксибутирата.

«Нам удалось изготовить сверхтонкие волокна из двух биоразлагаемых полиэфиров. Оба имеют природное происхождение: полилактид производится из растительного сырья, а полигидроксибутират синтезируют бактерии нескольких видов. Но нашей главной задачей было не получить волокна, а определить, сохраняются ли их свойства под воздействием агрессивных факторов внешней среды», — рассказал кандидат биологических наук Александр Вечер, заместитель директора центра «Нанотехнологии» РУДН.

Ученые изготовили волокна шести видов из порошка полилактида и гранул полигидроксибутирата методом электроформования. Раствор полимера поместили в электростатическое поле с высоким напряжением, которое «вытянуло» раствор в тонкие струи. После остывания они превратились в волокна. Шесть видов готовых волокон отличались по содержанию полимеров в составе — чистые полилактид и полигидроксибутират и их смеси в разных соотношениях.

Биологи РУДН изучили, как на полученные нановолокна действует вода, физиологическая среда — внутренняя среда организма — и озон. Оказалось, что поглощение водяного пара зависит от структуры полимера. Чем выше доля полилактида, тем больше воды поглощают волокна: вплоть до 1% веса образца. Чтобы сымитировать внутреннюю среду живого организма, использовался раствор солей-фосфатов калия и натрия. Полилактидные волокна за 21 день в растворе потеряли более 50% массы, а образцы с высоким содержанием полигидроксибутирата — менее 15%. Также полимеры с высоким содержанием полилактида быстрее поглощали молекулы озона при обработке потоком этого газа и в результате такого интенсивного окисления разрушались. Быстрее всего озон проникал в волокна с соотношением двух полимеров 50:50.

«Мы показали, что биоразлагаемые нановолокна, для которых более характерна кристаллическая структура, устойчивее к разложению водой и озоном. Теперь требуется проверить эти материалы на устойчивость к воздействию ультрафиолета и микроорганизмов, чтобы определить оптимальные сферы применения для каждого вида волокон», — прокомментировал Александр Вечер.

Результаты опубликованы в журнале Polymers.

Новости
Все новости
Наука
29 декабря 2025
Построить устойчивое будущее: что такое ЦУР и как РУДН помогает их достигать

Представьте себе мир, где у каждого есть достаточно еды, чистая вода, доступ к образованию и достойная работа. Мир, где берегут природу и заботятся о будущем нашей планеты. Это и есть цели устойчивого развития — построить устойчивое будущее для всех! Для этого Организация Объединенных Наций (ООН) в 2015 году определила 17 Целей устойчивого развития (ЦУР). ЦУР — это глобальный план, который помогает странам и людям вместе двигаться к лучшему будущему. К нему присоединились 193 государства-члена ООН.

Наука
26 декабря 2025
Необоснованные обобщения и ложные выводы: учёные РУДН выявили «галлюцинации» ИИ при диагностике ментальных расстройств

Исследователи факультета искусственного интеллекта РУДН провели масштабное исследование, которое раскрыло системные ошибки больших языковых моделей (LLM) при диагностике депрессии по тексту. Эта работа, выполненная совместно с коллегами из AIRI, ФИЦ ИУ РАН, ИСП РАН, МФТИ и MBZUAI, не только выявляет проблему, но и закладывает основу для создания более надёжных и безопасных инструментов для детектирования депрессии и тревожности.

Наука
25 декабря 2025
Наследие академика Пальцева: в РУДН прошла первая конференция по функциональной морфологии тканевого микроокружения

В РУДН состоялась первая научно-практическая конференция «Функциональная морфология тканевого микроокружения: от теории к практике», посвящённая памяти академика РАН Михаила Пальцева. Она объединила ведущих исследователей из России, Китая и других стран, став важной площадкой для обсуждения трансляции фундаментальных открытий в персонализированную медицину.