Математики РУДН уточнили условия формирования структур Тьюринга

Математики РУДН уточнили условия формирования структур Тьюринга

Структуры Тьюринга — математическое выражение «узоров», которые могут формироваться в химических и биологических системах — например, полос и пятен на шкурах животных. Математики РУДН выяснили, что классические условия существования структур Тьюринга не всегда отражают реальность. Оказалось, что критерии для их образования более гибкие, чем считалось раньше.

Структуры Тьюринга — устойчивые формирования, которые возникают в химических и биологических системах. Пример структур Тьюринга — формирование на заданном расстоянии друг от друга листьев у растений или щупальцев у животных, а также узоров на шкурах. Они названы по имени британского математика Алана Тьюринга, который впервые предсказал их существование в 1952 году. Математически эти структуры описываются системой уравнений «реакция-диффузия», в которой взаимодействуют два или более элементов. Математики РУДН расширили общепринятые критерии, при которых в системах «реакция-диффузия» могут формироваться такие структуры.

Стандартная модель Тьюринга предполагает, что для образования структур в системе из двух элементов нужны определенные условия. Один из элементов должен быть «самоактиватором» — увеличение его количества еще больше стимулирует его собственный прирост. Второй элемент должен быть «самоингибитором», то есть действовать противоположным образом. Кроме того, подвижность, или коэффициент диффузии, самоингибитора должна быть выше, чем у самоактиватора. Насколько именно — зависит от конкретных значений остальных параметров системы. Однако для реальных химических и биологических систем это не выполняется — подвижность активатора и ингибитора обычно отличается незначительно. Из-за этого существует лишь небольшой «коридор» значений, которые могут принимать остальные параметры системы, чтобы структуры сформировались.

«Предложенный Тьюрингом механизм не стабилен — то есть незначительное случайное изменение параметров модели запросто может привести к прекращению формирования структур — и в результате получится, что у животного нет необходимых ему органов или узоров на шкуре. Однако в последние годы появились свидетельства того, что структуры Тьюринга в многокомпонентных системах могут формироваться и в обход общепринятой концепции. В частности, было продемонстрировано существование систем с одним неподвижным элементом, в которых структуры Тьюринга возникают при любых коэффициентах диффузии подвижных элементов», — кандидат физико-математических наук Максим Кузнецов, младший научный сотрудник центра «Математическое моделирование в биомедицине» РУДН.

Математики показали, что если в системе есть «неподвижный» элемент, который не является ни самоактиватором, ни самоингибитором, то условия для формирования структур Тьюринга существенно расширяются. Оказалось, что ключевую роль начинает играть способ взаимодействия этого элемента с двумя подвижными элементами. Возможно три типа взаимодействия: увеличение концентрации одного элемента стимулирует прирост другого, ингибирует его или никак не влияет. Математики РУДН выяснили, что при определенных схемах взаимодействия элементов структуры Тьюринга формируются в ней не только при любых коэффициентах диффузии подвижных элементов, но и при любых значениях остальных параметров системы.

«Такие условия предлагают несколько более сложный, но гораздо более стабильный механизм формирования структур Тьюринга по сравнению с классическим — в то время как скорости реакций в биологии могут варьироваться в очень широких пределах, тип влияния одного элемента на другой обычно четко задан. На данный момент неизвестно, реализуется ли такой механизм в живой природе, однако никакое из его условий не противоречит биологическим законам. Более того, так как развитие живого мира диктуется законами биологической эволюции, высокая стабильность найденного механизма должна обеспечить его распространение в природе при условии возможности его реализации», — кандидат физико-математических наук Максим Кузнецов, младший научный сотрудник центра «Математическое моделирование в биомедицине» РУДН.

Результаты опубликованы в Chaos: An Interdisciplinary Journal of Nonlinear Science.

Новости
Все новости
Наука
30 июля
Химик РУДН нашел способ сделать производство биотполива в 4-10 раз эффективнее с помощью кремниевой матрицы и гетерополикислот

Химик РУДН создал кремниевый молекулярный каркас для получения эфиров из отходов сельского хозяйства, древесной и бумажной промышленности. Он в 4-10 раз повышает эффективность получения эфиров, которые можно использовать как биотопливо. Это позволит снизить энергозатраты и сделает производство биотоплива дешевле. 

Наука
28 июля
Химики РУДН разработали новый путь синтеза веществ для фармацевтики

Химики РУДН предложили универсальный способ синтеза производных тиеноиндолизинов. Свойства этих веществ позволяют использовать их для создания антибактериальных и противораковых препаратов, а также в производстве новых материалов для оптоэлектроники.

Наука
26 июля
Химики РУДН разработали домино-реакцию для получения противоопухолевых препаратов

Химики РУДН предложили новую реакцию для получения сложных органических веществ в одном сосуде. Продукты синтеза оказались эффективными против клеток раковых опухолей, в том числе — устойчивых к известным препаратам.